Structure of certain solvable j-algebras

HIROSHI NAKAZATO

Abstract. In this paper we study the stability subgroups of certain solvable Lie groups with respect to the coadjoint action in connection with j-algebras. For this aim we generalize Piatetskii-Shapiro's theory on normal (split solvable) j-algebras. We prove the connectedness of the stabilizers for certain solvable j-algebras. In the last section we give an example of j-simple solvable j-algebras which satisfy our assumtion (1.1) and have rank > 1. Such phenomena do not occur for solvable j-algebras of exponential type which were already treated by I.I.Piatetskii-Shapiro and H.Fujiwara.

1. Introduction and Main Results

We find many literatures which treat the j-algebras in connection with the homogeneous Kähler manifolds (e.g.[2],[3],[8],[11],[14]) or the holomorphically induced unitary representations of Lie groups(e.g. [10],[1],[4],[7],[9],[13]). In this paper we study solvable j-algebras satisfying the condition (1.1), which is given in Theorem 1. Our main motivation to study these j-algebras is to generalize R.Penney's theorem on exponential solvable j-algebras [10],Theorem 2. We believe that our structure theorem is useful to achieve this aim.

Definition. Suppose that $\omega : g \to \mathbb{R}$ is a linear functional on a finite dimensional Lie algebra g over \mathbb{R} . Denote its complexification $\omega^{\mathbb{C}} : g^{\mathbb{C}} \to \mathbb{C}$ by the same letter ω . Suppose that h is a complex Lie subalgebra of $g^{\mathbb{C}}$. The algebra h is said to be an *algebraic polarization* of g at ω if the following conditions are fulfilled:

i) $\omega([Z_1, Z_2]) = 0$ for every $Z_1, Z_2\epsilon \mathfrak{h}$. ii) If $Z_0\epsilon \mathfrak{g}^{\mathbb{C}}$ satisfies $\omega([Z_0, Z]) = 0$ for every $Z\epsilon \mathfrak{h}$, then Z_0 is an element of \mathfrak{h} . iii) $\mathfrak{h} + \overline{\mathfrak{h}}$ is a Lie subalgebra of $\mathfrak{g}^{\mathbb{C}}$. An algebraic polarization \mathfrak{h} is said to be totally complex if the condition iv) $\mathfrak{h} + \overline{\mathfrak{h}} = \mathfrak{g}^{\mathbb{C}}$ is satisfied. An algebraic polarization \mathfrak{h} at ω is said to be positive if \mathfrak{v}) $\sqrt{-1}\omega([Z,\overline{Z}]) \ge 0$ holds for every $Z\epsilon\mathfrak{h}$. Denote by G the connected, simply connected Lie group with Lie algebra \mathfrak{g} . Denote by G_{ω} the stabilizer of ω , i.e., $G_{\omega} = \{g\epsilon G : \omega(Ad(g)(X)) = \omega(X) \text{ for every } X\epsilon\mathfrak{g}\}$ and by \mathfrak{g}_{ω} the Lie algebra of G_{ω} , i.e., $\mathfrak{g}_{\omega} = \{X\epsilon\mathfrak{g} : \omega([X,Y])=0$ for every $Y\epsilon\mathfrak{g}\}$.

— 33 —