Characterization of generalized surfaces of revolution

Young Ho Kim *

Abstract: We study the so-called generalized surfaces of revolution in a Euclidean space by considering normal sections.

1. Introduction

We define a generalized surface of revolution in (n+1)-dimensional Euclidean space E^{n+1} : Let C be a plane curve in E^{n+1} . A manifold of dimension n generated by revolving C around an axis is said to be a generalized surface of revolution in E^{n+1} . In the present paper, we characterize a generalized surface of revolution in E^{n+1} .

The author would like to express his sincere thanks to the referee who gave him many valuable suggestions to improve the paper.

2. Preliminaries

Let M=(M,x) be an n-dimensional submanifold in m-dimensional Euclidean space E^m , where x is an isometric immersion from M into E^m . Let ∇ and $\widetilde{\nabla}$ be the Levi-Civita connections of M and E^m respectively. For any two vector fields X and Y tangent to M, the second fundamental form σ is given by $\sigma(X,Y) = \widetilde{\nabla}_X Y - \nabla_X Y$. For a vector field ξ normal to M and X a vector field tangent to M, we may decompose $\widetilde{\nabla}_X \xi$ as $\widetilde{\nabla}_X \xi = -A_{\xi} X + \overline{\nabla}_X^{\perp} \xi$, where $-A_{\xi} X$ and $\overline{\nabla}_X^{\perp} \xi$ denote the

tangential and normal components of $\tilde{\nabla}_X \xi$, respectively, and ∇^\perp is called the normal connection of the normal bundle $T^\perp M$. Let <, > be the scalar product of E^m . Then the Weingarten map A_ξ and the second fundamental form σ have the following relationship: $< A_\xi X$, $Y > = < \sigma(X, Y)$, $\xi >$ for all vector fields X and Y tangent to M and every normal vector field ξ .

For the second fundamental form σ , we define a covariant derivative $\overline{\nabla}\sigma$ by

(2.1)
$$(\overline{\nabla}_{\mathbf{X}}\sigma)(\mathbf{Y},\mathbf{Z}) = \nabla_{\mathbf{X}}^{\perp}\sigma(\mathbf{Y},\mathbf{Z}) - \sigma(\nabla_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) - \sigma(\mathbf{Y},\nabla_{\mathbf{X}}\mathbf{Z})$$

for vector fields X, Y and Z tangent to M. Let R be the curvature tensor of M. Then the structure equations of Gauss and Codazzi are given by

^{*}This work was partially supported by TGRC-KOSEF.

¹⁹⁸⁰ Mathematical Subject Classification (1985 Revision): Primary 53C40 Key Words and Phrases: geodesics, normal sections and surfaces of revolution