Characterization of generalized surfaces of revolution

Young Ho Kim *

Abstract

We study the so-called generalized surfaces of revolution in a Euclidean space by considering normal sections.

1. Introduction

We define a generalized surface of revolution in ($\mathrm{n}+1$)-dimensional Euclidean space $\mathrm{E}^{\mathrm{n}+1}$: Let C be a plane curve in $\mathrm{E}^{\mathrm{n}+1}$. A manifold of dimension n generated by revolving C around an axis is said to be a generalized surface of revolution in $\mathrm{E}^{\mathrm{n}+1}$. In the present paper, we characterize a generalized surface of revolution in $\mathrm{E}^{\mathrm{n}+1}$.

The author would like to express his sincere thanks to the referee who gave him many valuable suggestions to improve the paper.

2. Preliminaries

Let $\mathbf{M}=(\mathbf{M}, \mathbf{x})$ be an n -dimensional submanifold in \mathbf{m}-dimensional Euclidean space E^{m}, where x is an isometric immersion from M into E^{m}. Let ∇ and $\tilde{\nabla}$ be the Levi-Civita connections of \mathbf{M} and E^{m} respectively. For any two vector fields \mathbf{X} and \mathbf{Y} tangent to M, the second fundamental form σ is given by $\sigma(X, Y)=\widetilde{\nabla}_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{X}} \mathbf{Y}$. For a vector field ξ normal to M and X a vector field tangent to M, we may decompose $\tilde{\nabla}_{X} \xi$ as $\tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi$, where $-A_{\xi} X$ and $\nabla_{X}^{\perp} \xi$ denote the tangential and normal components of $\widetilde{\nabla}_{\mathbf{X}} \xi$, respectively, and ∇^{\perp} is called the normal connection of the normal bundle $\mathrm{T}^{\perp} \mathbf{M}$. Let $<,>$ be the scalar product of E^{m}. Then the Weingarten map A_{ξ} and the second fundamental form σ have the following relationship : $\left\langle A_{\xi} X, Y\right\rangle=\langle\sigma(X, Y), \xi\rangle$ for all vector fields X and Y tangent to M and every normal vector field ξ.

For the second fundamental form σ, we define a covariant derivative $\bar{\nabla} \sigma$ by

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{X}} \sigma\right)(\mathrm{Y}, \mathrm{Z})=\nabla_{\mathbf{X}}^{\perp} \sigma(\mathrm{Y}, \mathrm{Z})-\sigma\left(\nabla_{\mathbf{X}} \mathrm{Y}, \mathrm{Z}\right)-\sigma\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}\right) \tag{2.1}
\end{equation*}
$$

for vector fields X, Y and Z tangent to M. Let R be the curvature tensor of M. Then the structure equations of Gauss and Codazzi are given by

[^0]
[^0]: *This work was partially supported by TGRC-KOSEF.
 1980 Mathematical Subject Classification (1985 Revision) : Primary 53 C 40
 Key Words and Phrases : geodesics, normal sections and surfaces of revolution

