STRUCTURE OF GROUP C^* -ALGEBRAS OF SEMI-DIRECT PRODUCTS OF \mathbb{C}^n BY Z

TAKAHIRO SUDO

ABSTRACT. We consider the structure of group C^* -algebras of semi-direct products of \mathbb{C}^n by Z. As an application we estimate the stable rank and connected stable rank of these C^* -algebras, and treat the case of semi-direct products of \mathbb{R}^n by Z similarly.

§0. INTRODUCTION

Group C^* -algebras have played important roles in the progress of the theory of C^* algebras. In particular, their structure for Lie groups has been investigated (cf.[Dx], [Rs], [Gr1,2], [Pg], [Wg], etc). On the other hand, the stable rank for C^* -algebras was introduced by M.A. Rieffel [Rf1] as a noncommutative analogue of the covering dimension for topological spaces, and he raised an interesting problem such as describing the stable rank of group C^* -algebras of Lie groups in terms of groups. On this problem some partial answers were obtained by [Sh],[ST1,2] and [Sd1-4]. In particular, in [Sd4] the author investigated the structure of group C^* -algebras of Lie semi-direct products of \mathbb{C}^n by \mathbb{R} , and estimated their stable rank and connected stable rank.

In this paper we obtain finite composition series of group C^* -algebras of the semidirect products of \mathbb{C}^n by \mathbb{Z} , by analyzing their subquotients explicitly using some methods of [Sd4] similarly. Using this result we give the rank estimations of these group C^* -algebras, and especially that of semi-direct products of \mathbb{R}^n by \mathbb{Z} . These are disconnected solvable (Lie) groups, and contain the discrete Mautner group studied by L. Baggett [Bg] to construct some unitary representations of the Mautner group through Mackey machine. We emphasize that this paper will be the first step to explore the algebraic structure of C^* -algebras of general disconnected solvable Lie groups.

We now prepare some notations. Let $C^*(G)$ be the (full) group C^* -algebra of a locally compact group G (cf.[Dx, Part II],[Pd, Chapter 7]). We denote by \hat{G}_1 the space of all 1-dimensional representations of G. Let $C_0(X)$ be the C^* -algebra of all complex valued continuous functions on a locally compact Hausdorff space X vanishing at infinity. When X is compact, we set $C_0(X) = C(X)$. Let \mathbb{K} be the C^* -algebra of all compact operators on a countably infinite dimensional Hilbert space. For a C^* -algebra \mathfrak{A} , we denote by $\operatorname{sr}(\mathfrak{A})$, $\operatorname{csr}(\mathfrak{A})$ its stable rank, connected stable rank respectively ([Rf1]).

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L05, 46L80, 22D25, 19K56.

Key words and phrases: Group C^* -algebras, Semi-direct products, Lie groups, Stable rank Research partially supported by Japan Society for the Promotion of Science