L^2 THEORY FOR THE OPERATOR $\Delta + (k \times x) \cdot \nabla$ IN EXTERIOR DOMAINS

Toshiaki Hishida

ABSTRACT. In exterior domains of \mathbb{R}^3 , we consider the differential operator $\Delta + (k \times x) \cdot \nabla$ with Dirichlet boundary condition, where k stands for the angular velocity of a rotating obstacle. We show, among others, a certain smoothing property together with estimates near t = 0 of the generated semigroup (it is not an analytic one) in the space L^2 . The result is not trivial because the coefficient $k \times x$ is unbounded at infinity. The proof is mainly based on a cut-off technique. The equation $\partial_t u = \Delta u + (k \times x) \cdot \nabla u$ can be taken as a model problem for a linearized form of the Navier-Stokes equations in a domain exterior to a rotating obstacle. This paper is a step toward an analysis of the Navier-Stokes flow in such a domain. Key words and phrases: differential operators with unbounded coefficients, exterior domains, semigroups, smoothing effects.

1. Introduction and statement of main results

Let $\mathcal{O} \subset \mathbb{R}^3$ be a compact obstacle which is bounded by a smooth surface Γ . In the exterior domain $\Omega = \mathbb{R}^3 \setminus \mathcal{O}$ we consider the initial boundary value problem

(1.1)	$\partial_t u = \Delta u + (k \times x) \cdot \nabla u,$	$x\in \Omega, \; t>0,$
	u(x,t)=0,	$x\in \Gamma, \; t>0,$
	$\begin{cases} u(x,t) \to 0, \end{cases}$	$ x ightarrow\infty,\;t>0,$
	$\int u(x,0) = a(x),$	$x\in \Omega$,

where $k = (0, 0, 1)^T$, so that $k \times x = (-x_2, x_1, 0)^T$. The aim of the present paper is to establish some fundamental properties for the differential operator $\Delta + (k \times x) \cdot \nabla$ in exterior domains. It is proved that the operator with homogeneous Dirichlet boundary condition generates a semigroup having a certain smoothing property and enjoys an elliptic regularity estimate in the space L^2 .

Let us explain the motivation of this study. Assume that the exterior domain Ω is occupied by a viscous incompressible fluid and that the obstacle \mathcal{O} is rotating about the x_3 -axis with angular velocity k. We then consider the fluid motion governed by the Navier-Stokes equation in the domain $\Omega(t) = \{O(t)x; x \in \Omega\}$, where

¹⁹⁹¹ Mathematics Subject Classification: 35K15, 47D03.