Regeneration in Quaternionic Analysis

Xiao Dong LI

In Complex Analysis of Several Variables, Matsugu [6] gave a necessaryand sufficient condition that any pluriharmonic function g on a Rieman domain Ω over a Stein manifold is a real part of a holomorphic function on Ω. In Quaternionic Analysis, Nôno [8] gave a necessary and sufficient condition that any harmonic function f_{1} on a domain Ω in C^{2} has a hyper-conjugate harmonic function f_{2} so that the function $f_{1}+f_{2} j$ is hyperholomorphic on Ω. Marinov [5] developped systematically a theory of regenerations of regular functions. The main purpose of the present paper is to add a regeneration in Quaternionic Analysis.

The author would like to express his hearty gratitude to the referee for many valuable suggestions.

1. Regeneration

Let Ω be a complex manifold and f be a holomorphic function on Ω. Then its real part f_{1} is a pluriharmonic function on Ω. Let (Ω, φ) be a Rieman domain over a Stein manifold S and $(\tilde{\Omega}, \tilde{\varphi})$ be its envelope of holomorphy over S. Then, Matsugu [6] proved that the necessary and sufficient condition that, for any pluriharmonic function f_{1} on Ω, there exists a pluriharmonic function f_{2} on Ω so that $f_{1}+f_{2} i$ is holomorphic on Ω is that there holds $\mathrm{H}^{1}(\tilde{\Omega}, \mathrm{Z})=0$, where Z is the ring of integers.

The field \mathcal{H} of quaternions

$$
\begin{equation*}
z=x_{1}+i x_{2}+j x_{3}+k x_{4}, \quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathrm{R} \tag{1}
\end{equation*}
$$

is a four dimensional non-commutative R -field generated by four base elements $1, i, j$ and k with the following non commutative multiplication rule:

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j . \tag{2}
\end{equation*}
$$

x_{1}, x_{2}, x_{3} and x_{4} are called, respectively, the real, i, j and k part of z. In the papers Nôno [7], [8], [9], [10] and Marinov [5] loco citato, two complex numbers

$$
\begin{equation*}
z_{1}:=x_{1}+i x_{2}, \quad z_{2}:=x_{3}+i x_{4} \in \mathrm{C} \tag{3}
\end{equation*}
$$

are associated to (1), regarded as

$$
\begin{equation*}
z=z_{1}+z_{2} j \in \mathcal{H} . \tag{4}
\end{equation*}
$$

The quaternionic conjugate z^{*} of $z=z_{1}+z_{2} j \in \mathcal{H}$ is defined by

$$
\begin{equation*}
z^{*}:=\overline{z_{1}}-z_{2} j \tag{5}
\end{equation*}
$$

