SO(3)-action and 2-torus action on homotopy complex projective 3-spaces

By

Tsuyoshi WATABE

(Received May 20, 1975)

Introduction

In this note, we shall consider SO(3)-action and 2-torus action on homotopy complex projective 3-space with the view of proving that any exotic homotopy complex projective 3-space admits no effective SO(3)-action nor 2-torus action. In this direction the following results are known.

1. A homotopy complex projective 3-space (abbreviated by hCP_3) which admits an effective 3-torus action is diffeomorphic to the standard complex projective 3-space CP_3 . ([8])

2. An hCP₃ which admits an effective 1-torus action with fixed point set of 2 components is diffeomorphic to CP₃. ([11])

3. An hCP₃ which admits n-dimensional compact connected Lie group action $(n \ge 6)$ is diffeomorphic to CP₃. ([4])

In this note we shall prove the following

THEOREM. If an hCP_3 admits an effective SO(3)-action or 2-torus action, then it is diffeomorphic to CP_3 .

In the following all actions are assumed to be differentiable.

1. Statement of results

First we shall consider 2-torus action. Let G be a 2-torus and t_1 , t_2 denote the standard complex 1-dimensional representations of G. Then it is well known that the complex representation ring $R(G)=Z[t_1, t_2, t_1^{-1}, t_2^{-1}]$.

LEMMA 1. Let ϕ_1 and ϕ_2 be complex 1-dimensional representations of G. Put $\phi_1 = t_1^a t_2^b$ and $\phi_2 = t_1^c t_2^d$, where a, b, c, d, are integers. Then if ker $\phi_1 \cap$ ker $\phi_2 = 1$, we have adbc=1.

PROOF. Assume the contrary. Then $ad-bc=e\neq\pm 1$ and e is not zero. It is easy to see that there are integers k, l such that at least one of (kd-lb)/e, (la-kc)/e is not integer. Hence there exist real numbers θ and λ such that $a\theta+b\lambda\equiv 0$ (2π) , $c\theta+\lambda d\equiv 0$ (2π)