The C-numerical range of a 3×3 normal matrix

Hiroshi NAKAZATO

Abstract

In this note we study the shape of the C-numerical range of a 3×3 normal matrix.

1. Introduction and Results

In this decade many authors obtained new results in numerical ranges, numerical radii of linear operators and their related topics (cf. [2, 3, 6, 7, 9, 11]). In the paper [5] the author studied a special case of the C-numerical ranges. Recent work [4] provides us a new method to treat the C-numerical ranges. We will prove "weak convexity" of the C-numerical ranges in some sense.

Suppose that $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right)$ and $T=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are complex 3×3 diagonal matrices. We consider a compact subset $W_{C}(T)$ of the Gaussian plane \mathbf{C} defined by

$$
\begin{equation*}
W_{C}(T)=\left\{\operatorname{tr}\left(C U T U^{*}\right): U \in M_{3}(\mathbf{C}), U^{*} U=U U^{*}=I_{3}\right\} \tag{1.1}
\end{equation*}
$$

However this range is not necessarily convex, this range is star-shaped with respect to the point

$$
\begin{equation*}
(1 / 3)\left(c_{1}+c_{2}+c_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \in W_{C}(T) \tag{1.2}
\end{equation*}
$$

We consider the following 6 special points of $W_{C}(T)$:

$$
\begin{align*}
& \sigma_{1}=c_{1} \alpha_{1}+c_{2} \alpha_{2}+c_{3} \alpha_{3}, \sigma_{2}=c_{1} \alpha_{2}+c_{2} \alpha_{3}+c_{3} \alpha_{1}, \sigma_{3}=c_{1} \alpha_{3}+c_{2} \alpha_{1}+c_{3} \alpha_{2} \tag{1.3}\\
& \sigma_{4}=c_{1} \alpha_{1}+c_{2} \alpha_{3}+c_{3} \alpha_{2}, \sigma_{5}=c_{1} \alpha_{3}+c_{2} \alpha_{2}+c_{3} \alpha_{1}, \sigma_{6}=c_{1} \alpha_{2}+c_{2} \alpha_{1}+c_{3} \alpha_{3} \tag{1.4}
\end{align*}
$$

These are called σ-points of the range $W_{C}(T)$. The 9 line segments

