REVERSES OF OPERATOR INEQUALITIES ON OPERATOR MEANS

MASATOSHI FUJII*, RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

Abstract. In this note, we improve the non-commutative Kantorovich inequality as follows: If A, B satisfy $0<m \leq A, B \leq M$, then for each $\mu \in[0,1]$

$$
A \nabla_{\mu} B \leq \frac{M \nabla_{\mu} m}{M!_{\mu} m} A!_{\mu} B
$$

where $A!_{\mu} B$ is the μ-harmonic mean and $A \nabla_{\mu} B$ is the μ-arithmetic mean. Next we discuss the optimality of the constant $(\sqrt{M}-\sqrt{m})^{2}$ in the difference reverse inequality

$$
A \nabla B-A!B \leq(\sqrt{M}-\sqrt{m})^{2}
$$

for all positive invertible A, B with $0<m \leq A, B \leq M$.
In addition, we compare the μ-geometric mean $A \not \sharp_{\mu} B$ with $A \nabla_{\mu} B, A!_{\mu} B$ and $\frac{1}{2}\left(A \nabla_{\mu} B+A!_{\mu} B\right)$ for positive operators A and B.

1. Noncommutative Kantorovich inequality. Let Φ be a unital positive linear map on $B(H)$, the C^{*}-algebra of all bounded linear operators on a Hilbert space H. Then Kadison's Schwarz inequality asserts

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{-1} \leq \Phi(A) \tag{1}
\end{equation*}
$$

for all positive invertible $A \in B(H)$.
If Φ is defined on $B(H) \oplus B(H)$ by

$$
\begin{equation*}
\Phi(A \oplus B)=\frac{1}{2}(A+B) \quad \text { for } A, B \in B(H) \tag{2}
\end{equation*}
$$

then Φ satisfies

$$
\begin{equation*}
\Phi\left((A \oplus B)^{-1}\right)^{-1}=A!B, \quad \Phi(A \oplus B)=A \nabla B \tag{3}
\end{equation*}
$$

for all positive invertible $A, B \in B(H)$, where $A!B$ is the harmonic operator mean and $A \nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [5]. Consequently, Kadison's Schwarz inequality implies the arithmetic-harmonic mean inequality, i.e., $A!B \leq A \nabla B$, cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean inequality, i.e., $A!_{\mu} B \leq A \nabla_{\mu} B$ for $\mu \in[0,1]$, is proved.

Key words and phrases. Kantorovich inequality, reverse inequality, operator mean.

