REVERSES OF OPERATOR INEQUALITIES ON OPERATOR MEANS

MASATOSHI FUJII*, RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

ABSTRACT. In this note, we improve the non-commutative Kantorovich inequality as follows: If A, B satisfy $0 < m \le A, B \le M$, then for each $\mu \in [0, 1]$

$$A\nabla_{\mu}B \leq \frac{M\nabla_{\mu}m}{M!_{\mu}m}A!_{\mu}B,$$

where $A \downarrow_{\mu} B$ is the μ -harmonic mean and $A \nabla_{\mu} B$ is the μ -arithmetic mean. Next we discuss the optimality of the constant $(\sqrt{M} - \sqrt{m})^2$ in the difference reverse inequality

$$A \nabla B - A \mid B \leq (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible A, B with $0 < m \le A, B \le M$.

In addition, we compare the μ -geometric mean $A \not\equiv_{\mu} B$ with $A \nabla_{\mu} B$, $A \not\equiv_{\mu} B$ and $\frac{1}{2}(A \nabla_{\mu} B + A \not\equiv_{\mu} B)$ for positive operators A and B.

1. Noncommutative Kantorovich inequality. Let Φ be a unital positive linear map on B(H), the C^{*}-algebra of all bounded linear operators on a Hilbert space H. Then Kadison's Schwarz inequality asserts

(1)
$$\Phi(A^{-1})^{-1} \le \Phi(A)$$

for all positive invertible $A \in B(H)$.

If Φ is defined on $B(H) \oplus B(H)$ by

(2)
$$\Phi(A \oplus B) = \frac{1}{2}(A+B) \quad \text{for } A, B \in B(H),$$

then Φ satisfies

(3)
$$\Phi((A \oplus B)^{-1})^{-1} = A \mid B, \quad \Phi(A \oplus B) = A \nabla B$$

for all positive invertible $A, B \in B(H)$, where $A \mid B$ is the harmonic operator mean and $A \nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [5]. Consequently, Kadison's Schwarz inequality implies the arithmetic-harmonic mean inequality, i.e., $A \mid B \leq A \nabla B$, cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean inequality, i.e., $A \downarrow_{\mu} B \leq A \nabla_{\mu} B$ for $\mu \in [0, 1]$, is proved.

-125-

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A64 and 47B15.

Key words and phrases. Kantorovich inequality, reverse inequality, operator mean.