ON BELLMAN'S EQUATIONS WITH VMO COEFFICIENTS*

NICOLAI V. KRYLOV †

Abstract. We present a result about solvability in W_p^2 , p > d, in the whole space \mathbb{R}^d of Bellman's equations with VMO "coefficients". Parabolic equations are touched upon as well.

Key words. Vanishing mean oscillation, fully nonlinear equations, Bellman's equations.

AMS subject classifications. 35J60

1. Main result. Let \mathbb{R}^d be the Euclidean space of points $x = (x^1, ..., x^d)$, $x^i \in \mathbb{R} = (-\infty, \infty)$. Fix a $\delta \in (0, 1)$ and denote by \mathcal{S}_{δ} the set of symmetric $d \times d$ -matrices $a = (a^{ij})$ satisfying

$$\delta |\xi|^2 \le a^{ij} \xi^i \xi^j \le \delta^{-1} |\xi|^2, \quad \forall \xi \in \mathbb{R}^d.$$

Let Ω be a separable metric space and assume that for any $\omega \in \Omega$ and $x \in \mathbb{R}^d$ we are given $a(\omega, x) \in S_{\delta}$, $b(\omega, x) \in \mathbb{R}^d$, and $c(\omega, x)$, $f(\omega, x) \in \mathbb{R}$. We assume that these functions are measurable in x for each ω , continuous in ω for each x, and

$$\begin{split} |b(\omega, x)| + c(\omega, x) &\leq K, \quad c(\omega, x) \geq 0, \quad \forall \omega, x \\ \bar{f}(x) &:= \sup_{\omega \in \Omega} |f(\omega, x)| < \infty \quad \forall x, \end{split}$$

where K is a fixed constant. Observe that, owing to the continuity of f in ω and separability of Ω , the function \overline{f} is measurable. For r > 0 and $x \in \mathbb{R}^d$ set

$$B_r(x) = \{ y \in \mathbb{R}^d : |x - y| < r \}, \quad B_r = B_r(0).$$

For a measurable set $\Gamma \subset \mathbb{R}^d$ by $|\Gamma|$ we denote its volume. In Section 4 we will use the same notation for measurable $\Gamma \subset \mathbb{R}^{d+1}$. Introduce,

$$(u)_{\Gamma} = \int_{\Gamma} u(x) \, dx = \frac{1}{|\Gamma|} \int_{\Gamma} u(x) \, dx.$$

In particular,

$$(a)_{B_r(x)}(\omega) = \int_{B_r(x)} a(\omega, y) \, dy$$

In the following assumption there is a parameter $\theta \in (0, 1]$, whose value will be specified later.

ASSUMPTION 1.1. There exists an $R_0 \in (0, \infty)$ such that for any $r \in (0, R_0]$ and $x \in \mathbb{R}^d$ we have

$$\oint_{B_r(x)} \sup_{\omega \in \Omega} |a(\omega, y) - (a)_{B_r(x)}(\omega)| \, dy \le \theta.$$
(1.1)

^{*}Received December 26, 2009; accepted for publication May 5, 2010. The work was partially supported by NSF Grant DMS-0653121.

[†]School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455, USA (krylov@math.umn.edu).