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NAVIER-STOKES APPROXIMATIONS TO 2D VORTEX SHEETS

IN HALF PLANE
∗
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Abstract. This paper concerns the two-dimensional Euler equations with vortex-sheets initial

data in half plane and in the domain Ω = {(x1, x2) : x2 ≥ γ(x1)}, γ(x1) = 0 for |x1| ≥ x0, x0 is a

fixed constant, and γ(x1) is a sufficient smooth and simple curve. The Navier-Stokes approximations

are constructed in this paper and by means of vanishing the viscosity, the global existence of weak

solutions is obtained under the assumption that the initial vorticity is of one-sign. Navier boundary

conditions are applied when constructing the Navier-Stokes approximations.
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1. Introduction. We consider the following two-dimensional incompressible
Euler equations
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∂tu+ u · ∇u + ∇p = 0 x ∈ H, t > 0,

divu = 0 x ∈ H, t > 0,

|u(x, t)| → 0 |x| → ∞,

(1.1)

where H = {(x1, x2) : x2 ≥ 0}. Define Γ
.
= ∂H = {x2 = 0}. The unknown func-

tions p = p(x, t) and u = (u1(x, t), u2(x, t)) represent the pressure and velocity fields
function, respectively.

The initial and boundary conditions of (1.1) are imposed as

u(x, t = 0) = u0 x ∈ H, (1.2)

and

u · n = 0 on Γ. (1.3)

In (1.3), n means the unit normal vector of Γ.
The vorticity of the velocity u(x, t) is denoted by ω(x, t) = curlu and the initial

vorticity is given by ω0(x) = curlu0. Roughly speaking, for a general domain Ω ⊆ R2,
the initial data of (1.1) are called vortex-sheets data if the initial velocity is locally
square integrable and the initial vorticity is a finite Radon measure,that is, u0 ∈
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