Differential and Integral Equations, Volume 7, Number 4, July 1994, pp. 1021-1040.

SEMILINEAR PARABOLIC EQUATIONS WITH PREISACH HYSTERESIS

T.D. LITTLE AND R.E. SHOWALTER Department of Mathematics, The University of Texas, Austin, TX 78712

To the memory of Peter Hess

Abstract. A coupled system consisting of a semilinear parabolic partial differential equation and a family of ordinary differential equations, which is capable of modeling a very general class of hysteresis effects, will be realized as an abstract Cauchy problem. Accretiveness estimates and maximality conditions are established in a product of L^1 spaces for the closure of the operator associated with this problem. Thus, the Cauchy problem corresponding to the closed operator admits a unique integral solution by way of the Crandall-Liggett theory. Special cases of the system include a one-dimensional derivation from Maxwell's equations for a ferromagnetic body under slowly varying field conditions, the Super-Stefan problem, and other partial differential equations with hysteresis terms appearing in the literature.

1. Introduction. We shall consider here the well-posedness of the initialboundary-value problem for a semilinear (possibly) degenerate parabolic partial differential equation with a hysteresis nonlinearity in the energy. This will include evolution equations of the form of a generalized porous medium equation

$$\frac{\partial}{\partial t}\left(a(u) + \mathcal{H}(u)\right) - \Delta u = f,\tag{1}$$

in which $a(\cdot)$ is a continuous monotone function and \mathcal{H} is a hysteresis functional; that is, the output $\mathcal{H}(u)$ depends not only on the current value of the input u, but also on the history of the input.

As an elementary but generic example of hysteresis, we mention a functional that arises in the description of the Super-Stefan problem [14]. This functional provides an example of a simple but basic form of hysteresis. The example depends on three parameters, α , β , and ϵ , with $0 < \epsilon$, $\alpha < \beta$. Denote by $[x]_+$ and $[x]_-$, respectively, the positive and negative parts of the real number x. The output $w(t) = \mathcal{H}(u(t))$ varies for t > 0 according to the following:

if
$$u > \beta + \epsilon$$
, then $w = 1$;
if $u < \alpha - \epsilon$, then $w = -1$;
if $\alpha - \epsilon < u < \beta + \epsilon$, then $|w| \le 1$

Received for publication December 1993.

AMS Subject Classifications: 35K55, 35K65, 35R20.