FAST LINEARIZED BREGMAN ITERATION FOR COMPRESSIVE SENSING AND SPARSE DENOISING*

STANLEY OSHER[†], YU MAO[‡], BIN DONG[§], AND WOTAO YIN[¶]

Dedicated to Andy Majda on his sixtieth birthday

Abstract. We propose and analyze an extremely fast, efficient, and simple method for solving the problem:

 $\min\{\|u\|_1: Au = f, u \in \mathbb{R}^n\}.$

This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008]. The motivation was compressive sensing, which now has a vast and exciting history, which seems to have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces an improvement called "kicking" of the very efficient method of [J. Darbon and S. Osher, preprint, 2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even be undersampled.

Key words. ℓ_1 -minimization, basis pursuit, compressed sensing, sparse denoising, iterative regularization.

AMS subject classifications. 49M99, 90-08, 65K10.

1. Introduction

Let $A \in \mathbb{R}^{m \times n}$, with n > m and $f \in \mathbb{R}^m$, be given. The aim of a basis pursuit problem is to find $u \in \mathbb{R}^n$ by solving the constrained minimization problem

$$\min_{u \in R^n} \{ J(u) | Au = f \}, \tag{1.1}$$

where J(u) is a continuous convex function.

For basis pursuit, we take:

$$J(u) = |u|_1 = \sum_{j=1}^{n} |u_j|.$$
(1.2)

^{*}Received: October 17, 2008; accepted (in revised version): December 11, 2008.

[†]Department of Mathematics, UCLA, Los Angeles, CA 90095 (sjo@math.ucla.edu). This author's research was supported by ONR Grant N000140710810, a grant from the Department of Defense, and NIH Grant UH54RR021813.

 $^{^{\}ddagger}$ Department of Mathematics, UCLA, Los Angeles, CA 90095 (ymao29@math.ucla.edu). This author's research was supported by NIH Grant UH54RR021813.

 $^{^{\$}}$ Department of Mathematics, UCLA, Los Angeles, CA 90095 (bdong@math.ucla.edu). This author's research was supported by NIH Grant UH54RR021813.

[¶]Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005 (wotao.yin@rice.edu). This author's research was supported by NSF Grant DMS-0748839 and an internal faculty research grant from the Dean of Engineering at Rice University.