An Orbifold Theory of Genus Zero Associated to the Sporadic Group M $_{24}$

Chongying Dong ${ }^{1}$, Geoffrey Mason ${ }^{2}$
Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

Received: 15 July 1993

Abstract

Let $V_{\Gamma_{l}}$ be the self-dual (or holomorphic) bosonic conformal field theory associated with the spin lattice Γ_{l} of rank l divisible by 24 . In earlier work of the authors we showed how it is possible to establish the existence and uniqueness of irreducible g-twisted sectors for $V_{\Gamma_{1}}$, for certain automorphisms g of $V_{\Gamma_{1},}$, and to establish the modular invariance of the space of partition functions $Z(g, h, \tau)$ corresponding to commuting pairs g, h of elements in certain groups G of automorphisms of $V_{\Gamma_{l}}$. In the present work we show that if we take $l=24$ and G the sporadic simple group M_{24}, then the corresponding orbifold has the genus zero property. That is, each $Z(g, h, \tau)$ is either identically zero or a hauptmodul, i.e., it generates the field of functions on the subgroup of $S L_{2}(\mathbb{R})$ which fixes $Z(g, h, \tau)$, which then necessarily has genus zero.

1. Introduction

The most famous example of a holomorphic (or self-dual) conformal field theory (CFT) is undoubtedly the Moonshine module whose automorphism group is the Monster M ([B1, FLM]). In their equally famous paper [CN], Conway and Norton laid out an impressive set of data related to their conjecture that for each $m \in M$, the graded trace of m on V^{\natural} (sometimes called the Thompson series of m, and denoted $T_{m}(\tau)$) is a particular kind of modular function called a hauptmodul. That is, the subgroup of $S L_{2}(\mathbb{R})$ which leaves $T_{m}(\tau)$ invariant is a discrete group Γ_{m} commensurable with $S L_{2}(\mathbb{Z})$ and such that the compactified orbit space $X_{m}=\Gamma_{m} \backslash \mathfrak{h} *$ for the usual action on the upper half-plane \mathfrak{h} is topologically a sphere. Furthermore, the field of meromorphic functions on X_{m} is precisely $\mathbb{C}\left(T_{m}\right)$; that is, each such function is a rational function of T_{m}. These conjectures have

[^0]
[^0]: ${ }^{1}$ Supported by NSA grant MDA904-92-H-3099, by a Regent's Junior Faculty Fellowship of the University of California, and by faculty research funds granted by the University of California, Santa Cruz.
 ${ }^{2}$ Supported by NSF grant DMS-9122030.

