Commun. Math. Phys. 164, 87-104 (1994)

An Orbifold Theory of Genus Zero Associated to the Sporadic Group M_{24}

Chongying Dong¹, Geoffrey Mason²

Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

Received: 15 July 1993

Abstract: Let V_{Γ_l} be the self-dual (or holomorphic) bosonic conformal field theory associated with the spin lattice Γ_l of rank l divisible by 24. In earlier work of the authors we showed how it is possible to establish the existence and uniqueness of irreducible g-twisted sectors for V_{Γ_l} , for certain automorphisms g of V_{Γ_l} , and to establish the modular invariance of the space of partition functions $Z(g, h, \tau)$ corresponding to commuting pairs g, h of elements in certain groups G of automorphisms of V_{Γ_l} . In the present work we show that if we take l = 24 and G the sporadic simple group M_{24} , then the corresponding orbifold has the genus zero property. That is, each $Z(g, h, \tau)$ is either identically zero or a hauptmodul, i.e., it generates the field of functions on the subgroup of $SL_2(\mathbb{R})$ which fixes $Z(g, h, \tau)$, which then necessarily has genus zero.

1. Introduction

The most famous example of a holomorphic (or self-dual) conformal field theory (CFT) is undoubtedly the *Moonshine module* whose automorphism group is the Monster M ([B1, FLM]). In their equally famous paper [CN], Conway and Norton laid out an impressive set of data related to their conjecture that for each $m \in M$, the graded trace of m on V^{*} (sometimes called the *Thompson series* of m, and denoted $T_m(\tau)$) is a particular kind of modular function called a *hauptmodul*. That is, the subgroup of $SL_2(\mathbb{R})$ which leaves $T_m(\tau)$ invariant is a discrete group Γ_m commensurable with $SL_2(\mathbb{Z})$ and such that the compactified orbit space $X_m = \Gamma_m \setminus \mathfrak{h}^*$ for the usual action on the upper half-plane \mathfrak{h} is topologically a sphere. Furthermore, the field of meromorphic functions on X_m is precisely $\mathbb{C}(T_m)$; that is, each such function is a rational function of T_m . These conjectures have

¹ Supported by NSA grant MDA904-92-H-3099, by a Regent's Junior Faculty Fellowship of the University of California, and by faculty research funds granted by the University of California, Santa Cruz.

² Supported by NSF grant DMS-9122030.