Commun. Math. Phys. 143, 599-605 (1992)

Convergence to Nonlinear Diffusion Waves for Solutions of a System of Hyperbolic Conservation Laws with Damping

Ling Hsiao^{1, *} and Tai-Ping Liu^{2, *, **}

¹ Institute of Mathematics, Academia Sinica, Beijing, China

² Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA

Received June 14, 1991

Abstract. We consider a model of hyperbolic conservation laws with damping and show that the solutions tend to those of a nonlinear parabolic equation timeasymptotically. The hyperbolic model may be viewed as isentropic Euler equations with friction term added to the momentum equation to model gas flow through a porous media. In this case our result justifies Darcy's law timeasymptotically. Our model may also be viewed as an elastic model with damping.

1. Introduction

Consider the following hyperbolic conservation laws with damping

$$v_t - u_x = 0,$$

 $u_t + p(v)_x = -\alpha u, \quad \alpha > 0, \quad p'(v) < 0.$
(1.1)

The system may be viewed as isentropic Euler equations in the Lagrangian coordinates with friction term $-\alpha u$ for the momentum equation. Thus it models the compressible flow through porous media. The commonly called porous media equation is obtained by approximating the second equation with Darcy's law

$$v_t = \frac{-1}{\alpha} p(v)_{xx},$$

$$p(v)_x = -\alpha u.$$
(1.2)

The purpose of this paper is to show that Darcy's law may be obtained from the more complete equations (1.1) time-asymptotically. That is, solutions of (1.1) tend

^{*} Research supported in part by Energy Dept. grant DEFG 02-88-ER25053

^{**} Research supported in part by NSF grant DMS 90-0226 and Army grant DAAL 03-91-G-0017