© Springer-Verlag 1990

q-Weyl Group and a Multiplicative Formula for Universal R-Matrices*

A. N. Kirillov¹ and N. Reshetikhin²

¹ LOMI, Fontanka 27, SU-191011 Leningrad, USSR

² Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received May 11, 1990

Abstract. We define the q-version of the Weyl group for quantized universal enveloping algebras of simple Lie group and we find explicit multiplicative formulas for the universal R-matrix.

1. For any semisimple complex Lie algebra \mathscr{G} there is a natural deformation of its universal enveloping algebra $U\mathscr{G}$ as a Hopf algebra over the formal power series over C [D1, J]. This deformation $U_h\mathscr{G}$ is called a quantum universal enveloping algebra or quantum group [D1]. These algebras are important in the theory of quantum integrable systems [F] because with each $U_h\mathscr{G}$ one can associate a certain canonical element R in $(U_h\mathscr{G})^{\otimes 2}$ which satisfies the Yang-Baxter equation

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

Here $R_{ij} \in U_h \mathcal{G}^{\otimes 3}$, $R_{12} = R \otimes 1$, $R_{23} = 1 \otimes R$ and $R_{13} = \sum_i \alpha_i \otimes 1 \otimes \beta_i$ if we rewrite R as $R = \sum_i \alpha_i \otimes \beta_i$, α_i , $\beta_i \in U_h \mathcal{G}$.

But up to now there was no explicit formula for R, except for the cases $g = sl_2$ [D1], $\mathcal{G} = sl_n$ [Ro2]. Drinfeld (private communication) conjectured that there is a relation between the Weyl group and the universal R-matrix for general simple Lie algebras. In this paper we define a completion $U_h\mathcal{G}$ by the Weyl elements of sl_2 triples corresponding to simple roots. This completion gives us a description of the quantum Weyl group as well as explicit formulas for the element R.

2. Let \mathscr{G} be a semisimple Lie algebra of rank n, a_{ij} its Cartan matrix, and d_i the length of the *i*-th root (then $d_i a_{ij} = a_{ii} d_i$).

^{*} Supported in part by the Department of Energy under Grant DE-FG02-88ER25065