(c) Springer-Verlag 1988

Isospectral Hamiltonian Flows in Finite and Infinite Dimensions

I. Generalized Moser Systems and Moment Maps into Loop Algebras*

M. R. Adams ${ }^{1}$, J. Harnad ${ }^{2}$, and E. Previato ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Georgia, Athens, GA 30602, USA
${ }^{2}$ Département de Mathémathiques Appliquées, Ecole Polytechnique, C.P. 6079, Succ. "A", Montréal, Qué H3C 3A7, Canada
${ }^{3}$ Department of Mathematics, Boston University, Boston, MA 02215, USA

Abstract

A moment map $\left.\tilde{J}_{r}: \mathscr{M}_{A} \rightarrow(\overline{g l(r)})^{+}\right)^{*}$ is constructed from the Poisson manifold \mathscr{M}_{A} of rank- r perturbations of a fixed $N \times N$ matrix A to the dual $\left(\widetilde{g l(r)^{+}}\right)^{*}$ of the positive part of the formal loop algebra $\widetilde{g l(r)}$ $=g l(r) \otimes \mathbb{C}\left[\left[\lambda, \lambda^{-1}\right]\right]$. The Adler-Kostant-Symes theorem is used to give hamiltonians which generate commutative isospectral flows on $\left(\overline{g l(r)^{+}}\right)^{*}$. The pull-back of these hamiltonians by the moment map gives rise to commutative isospectral hamiltonian flows in $\mathscr{\Lambda}_{A}$. The latter may be identified with flows on finite dimensional coadjoint orbits in $\left(\overline{g l(r)^{+}}\right)^{*}$ and linearized on the Jacobi variety of an invariant spectral curve X_{r} which, generically, is an r-sheeted Riemann surface. Reductions of \mathscr{M}_{A} are derived, corresponding to subalgebras of $g l(r, \mathbb{C})$ and $s l(r, \mathbb{C})$, determined as the fixed point set of automorphism groupes generated by involutions (i.e., all the classical algebras), as well as reductions to twisted subalgebras of $s(r, \widetilde{\mathbb{C}})$. The theory is illustrated by a number of examples of finite dimensional isospectral flows defining integrable hamiltonian systems and their embeddings as finite gap solutions to integrable systems of PDE's.

1. Introduction

In 1979 Moser [32] showed that a number of well-known completely integrable finite dimensional hamiltonian systems could be uniformly understood in the framework of certain rank 2 isospectral deformations of matrices. The problem he considered involved hamiltonian flow $(x(t), y(t))$ in $\mathbb{R}^{2 n}$ which, for a fixed $n \times n$ matrix A and real constants, a, b, c, d, leaves the spectrum of the matrix

$$
L=A+a x \otimes x+b x \otimes y+c y \otimes x+d y \otimes y
$$

invariant. Among the results he obtained were:

[^0]
[^0]: * This research was partially supported by NSF grants MCS-8108814 (A03), DMS-8604189, and DMS-8601995

