Isospectral Hamiltonian Flows in Finite and Infinite Dimensions

I. Generalized Moser Systems and Moment Maps into Loop Algebras*

M. R. Adams¹, J. Harnad², and E. Previato³

¹ Department of Mathematics, University of Georgia, Athens, GA 30602, USA

² Département de Mathémathiques Appliquées, Ecole Polytechnique, C.P. 6079, Succ. "A", Montréal, Qué H3C 3A7, Canada

³ Department of Mathematics, Boston University, Boston, MA 02215, USA

Abstract. A moment map $\tilde{J}_r: \mathcal{M}_A \to (\overline{gl(r)}^+)^*$ is constructed from the Poisson manifold \mathcal{M}_A of rank-*r* perturbations of a fixed $N \times N$ matrix *A* to the dual $(\overline{gl(r)}^+)^*$ of the positive part of the formal loop algebra $\overline{gl(r)} = gl(r) \otimes \mathbb{C}[[\lambda, \lambda^{-1}]]$. The Adler-Kostant-Symes theorem is used to give hamiltonians which generate commutative isospectral flows on $(\overline{gl(r)}^+)^*$. The pull-back of these hamiltonians by the moment map gives rise to commutative isospectral hamiltonian flows in \mathcal{M}_A . The latter may be identified with flows on finite dimensional coadjoint orbits in $(\overline{gl(r)}^+)^*$ and linearized on the Jacobi variety of an invariant spectral curve X_r which, generically, is an *r*-sheeted Riemann surface. Reductions of \mathcal{M}_A are derived, corresponding to subalgebras of $gl(r, \mathbb{C})$ and $sl(r, \mathbb{C})$, determined as the fixed point set of automorphism groupes generated by involutions (i.e., all the classical algebras), as well as reductions to twisted subalgebras of $sl(r, \mathbb{C})$. The theory is illustrated by a number of examples of finite dimensional isospectral flows defining integrable hamiltonian systems and their embeddings as finite gap solutions to integrable systems of PDE's.

1. Introduction

In 1979 Moser [32] showed that a number of well-known completely integrable finite dimensional hamiltonian systems could be uniformly understood in the framework of certain rank 2 isospectral deformations of matrices. The problem he considered involved hamiltonian flow (x(t), y(t)) in \mathbb{R}^{2n} which, for a fixed $n \times n$ matrix A and real constants, a, b, c, d, leaves the spectrum of the matrix

 $L = A + ax \otimes x + bx \otimes y + cy \otimes x + dy \otimes y$

invariant. Among the results he obtained were:

^{*} This research was partially supported by NSF grants MCS-8108814 (A03), DMS-8604189, and DMS-8601995