Commun. Math. Phys. 104, 283-290 (1986)

Stability of Coulomb Systems with Magnetic Fields III. Zero Energy Bound States of the Pauli Operator

Michael Loss* and Horng-Tzer Yau

Departments of Mathematics and Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. It is shown that there exist magnetic fields of finite self energy for which the operator $\sigma \cdot (p-A)$ has a zero energy bound state. This has the consequence that single electron atoms, as treated recently by Fröhlich, Lieb, and Loss [1], collapse when the nuclear charge number $z \ge 9\pi^2/8\alpha^2$ (α is the fine structure constant).

I. Introduction

In an accompanying paper [1] the stability of the hydrogen atom in magnetic fields is studied. The authors considered the following Hamiltonian

$$H = [\sigma \cdot (p - A)]^2 - z/|x|$$
(1.1)

whose ground state energy was denoted by $E_0(B, z)$. Here the σ_i 's are the Pauli matrices and A is the vector potential, $B = \operatorname{curl} A$. H acts on 2-component spinors ψ . In particular, it was shown that there is a critical number $z_c > 0$ such that E(z)

$$= \inf_{B} (E_0(B, z) + \varepsilon \int B^2)$$
 was finite whenever $z < z_c$ and $E(z) = -\infty$ for $z > z_c$.
 $\varepsilon = (8\pi\alpha^2)^{-1}$ and α is the fine structure constant $\simeq (137.04)^{-1}$. For the physical interpretation of these results see [1]. When they first did their work, the authors did not know whether z_c was finite or not. However they show, among other results, that a necessary and sufficient condition for the finiteness of z_c , is that the equation

$$\sigma \cdot (p - A)\psi = 0, \qquad (1.2)$$

is valid for some A and some ψ , which satisfy

$$\psi \in H^1(\mathbb{R}^3)$$
, i.e. $\psi, \nabla \psi \in L^2(\mathbb{R}^3)$, (1.3a)

$$A \in L^6(\mathbb{R}^3), \quad \text{div} A = 0 \quad \text{and} \quad B \equiv \operatorname{curl} A \in L^2(\mathbb{R}^3).$$
 (1.3b)

^{*} Supported in part by the U.S. and Swiss NSF Cooperative Science Program No. INT-8503858. Current address: Institut für Mathematik, FU Berlin, Arnimallee 3, D-1000 Berlin 33