Intersections of Random Walks in Four Dimensions. II*

Gregory F. Lawler
Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract

Let $f(n)$ be the probability that the paths of two simple random walks of length n starting at the origin in \mathbb{Z}^{4} have no intersection. It has previously been shown that $f(n) \leqq c(\log n)^{-1 / 2}$. Here it is proved that for all $r>\frac{1}{2}$, $\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty$.

1. Introduction

Let $S_{1}(n, \omega)$ and $S_{2}(n, \omega)$ be independent simple random walks starting at the origin in \mathbb{Z}^{4} (for definitions see [1]), and let Π_{1}, Π_{2} denote the paths of the walks

$$
\begin{aligned}
& \Pi_{i}(a, b)=\Pi_{i}(a, b, \omega)=\left\{S_{i}(n, \omega): a<n<b\right\} \\
& \Pi_{i}[a, b]=\Pi_{i}[a, b, \omega]=\left\{S_{i}(n, \omega): a \leqq b \leqq b\right\}
\end{aligned}
$$

and similarly for $\Pi_{i}(a, b]$ and $\Pi_{i}[a, b)$.
The probabilities that the paths Π_{i} intersect were studied in [1]. This paper follows up on that paper by giving a proof of a conjecture made. Let

$$
f(n)=P\left\{\Pi_{1}[0, n] \cap \Pi_{2}(0, n]=\emptyset\right\} .
$$

In [1] it was shown that there exist $c_{1}, c_{2}>0$ satisfying

$$
\begin{equation*}
c_{1}(\log n)^{-1} \leqq f(n) \leqq c_{2}(\log n)^{-1 / 2}, \tag{1.1}
\end{equation*}
$$

and it was conjectured for $r>\frac{1}{2}$, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty \tag{1.2}
\end{equation*}
$$

Here we prove (1.2).

[^0]
[^0]: * Research Supported by NSF grant MCS-8301037

