Min-Max Theory for the Yang-Mills-Higgs Equations

Clifford Henry Taubes*

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. In each monopole sector there exist an infinite number of finite energy solutions to the Prasad-Sommerfield limit of the SU(2) Yang-Mills-Higgs equations on \mathbb{R}^3 whose energy is greater than any finite number.

Contents

A 1	Introduction																								473
A 2	Stratagy for Convergence	•	·	•	·	•	·	·	•	·	·	·	·	•	·	•	·	·	·	·	•	•	·	•	176
A.Z	Strategy for Convergence	•	•	•	·	·	٠	•	·	•	·	•	•	·	·	•	•	•	·	•	•	·	·	•	4/0
A.3	Terminology		•				•		•							•		•	•		•				482
A.4	The Variational Problem																								483
B.1	The Regularized Problem																								486
B.2	Minimizing Sets for \mathfrak{A}^{δ}																								488
B.3	Convergence for Min-Max for §	\mathfrak{U}^{δ}																							493
B.4	Final Arguments for \mathfrak{A}^{δ}																								496
C.1	A priori Estimates																								498
C.2	Exponential Decay Estimates .																								502
C.3	Power Law Estimates for Φ .																								505
C.4	Power Law Estimates for A .																								508
D.1	The Stress Energy Identity																								513
D.2	The Cluster Decomposition																								516
D.3	The Interaction of Clusters																								519
D.4	The Convergence of Min-Max f	or	A																						526
E.1	The Neighborhood of the Modu	ıli	Sp	ac	e																				528
E.2	Min-Max, and Pointed Homoto	ру	· .	•		•	•		•		•	•		•	•				•				•		537

A.1. Introduction

The differential equations of a classical gauge theory are, in many cases, the formal variational equations of a functional (the action) on a topologically non-trivial space. And so it was conjectured [1, 2] that Morse theory, or some weaker analog might be useful for establishing the existence of non-trivial solutions. There are

^{*} National Science Foundation Postdoctoral Fellow in Mathematics