

© Springer-Verlag 1982

Representations Obeying the Spectrum Condition

Sergio Doplicher and Mauro Spera Istituto Matematico "G. Castelnuovo", Università di Roma, Rome, Italy

Abstract. We show that every properly infinite, injective von Neumann algebra acting on a separable Hilbert space is isomorphic to the weak closure of some translation covariant representation, obeying the spectrum condition for the generators of the translation group, of the C^* -algebra of quasilocal observables of a free massless spinor field. We construct explicitly such representations in the case of H_{∞} and III_{λ} factors, $0 < \lambda < 1$.

1. Introduction

The von Neumann algebra generated by a representation π of the C^* algebra $\mathfrak A$ of quasilocal observables of a local quantum theory [1] is known to be type I if π is covariant for the space time translation group, the representation $\mathcal U$ of this group on $\mathcal H_\pi$ fulfills the spectrum condition

$$\operatorname{Sp}(\mathscr{U}) \subset \overline{V}_{+} \tag{1.1}$$

and there is a \mathcal{U} -invariant vector which is cyclic for π (the vacuum) [2]. In absence of the vacuum, $\pi(\mathfrak{U})''$ is also type I if the spectrum condition (1.1) is sharpened by requiring the existence of a massive particle isolated from the rest of the spectrum [3].

We show that in presence of massless particles all types of von Neumann algebras can appear among the positive energy representations of \mathfrak{A} . This answers a question posed by D. Buchholz.

We study a simple model, the even part of the field algebra of a free massless Majorana particle. Specifically, we consider the CAR algebra $\mathfrak{A}(K)$ over K, when K is the direct sum of the Hilbert spaces of the irreducible unitary representations of the covering of the Poincaré group of zero mass, spin 1/2 and helicities \pm . The destruction and creation operators a(f), $a(g)^*$, $f,g\in K$, fulfilling the CAR, are related in the standard way to the negative and positive frequency parts of the free massless Majorana field ψ . The local field algebras $\mathfrak{F}(\emptyset)$ are the C^* -subalgebras of $\mathfrak{A}(K)$

¹ By considering $K \oplus K$ instead of K to allow distinction between particles and antiparticles, we could similarly study a massless Dirac theory