Commun. Math. Phys. 81, 171-187 (1981)

Some Global Solutions of the Yang–Mills Equations in Minkowski Space⁺

Robert T. Glassey¹ and Walter A. Strauss²

1 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

2 Department of Mathematics, Brown University, Providence, RI 02912, USA

Abstract. A class of global solutions of the Yang-Mills equations whose Cauchy data depend on a pair of arbitrary functions is constructed. The asymptotic propagation of the energy in space-time is studied. The same results are valid if the Yang-Mills field is coupled to a scalar field.

1. Introduction

This paper is concerned with solutions of the classical Yang-Mills equations in the whole of Minkowski space-time. Although one would like to exhibit such global solutions by explicit formulas, the best representation one could envisage for a general solution would be its exhibition as an infinite series or as the result of a limiting procedure. Since the equations essentially comprise a hyperbolic system of partial differential equations, it is natural to consider the Cauchy problem: do arbitrary data at a finite time (say t = 0) determine a unique solution at all later and earlier times? In this paper we restrict our considerations to data which have finite energy and whose potentials vanish as $|x| \to \infty$.

It should be noted that the Yang-Mills equations are entirely different in Euclidean space. They form an elliptic, rather than a hyperbolic, system. In particular, the condition that a solution be square-integrable in space *and* imaginary time is a severe one. It makes the instantons form a class depending only on a few parameters.

In Sect. 2 we use a limiting procedure to construct a family of global solutions to the Yang-Mills equations (YM) if the gauge group is SU(2). The solutions depend on two arbitrary functions of one variable. A substitution of the Polyakov-t'Hooft type specifies the direction of the gauge potentials A^{μ} and expresses their amplitudes in terms of a single scalar function $\alpha(|x|, t)$. The equations are thereby reduced to a single scalar nonlinear wave equation with singular coefficients. Except for the condition of finite energy, the Cauchy data for this

[†] Research supported in part by NSF Grants MCS 77-01340 and MCS 79-01965