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The Deterministic Version of the Glimm Scheme*
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Abstract. The Glimm scheme for solving hyperbolic conservation laws has a
stochastic feature it depends on a random sequence. The purpose of this paper
is to show that the scheme converges for any equidistributed sequence. Thus the
scheme becomes deterministic.

1. Introduction

We consider the initial value problem for the system of general conservation laws:

g + ̂ U , ^ 0 , -oo<*<oo, (1.1)

u(x,0) = uo(x), -co<x<oo, (1.2)

where u and f(u) are n-vectors, and / is a smooth function of u. The system is
assumed to be strictly hyperbolic, that is, the matrix df(u)/du has real and distinct
eigenvalues λί(ύ)<λ2(u)<... <λn(u) with corresponding right eigenvectors r^u),
r2(u\ ..., rn(u). Since (1.1), (1.2) in general does not have smooth solution we look for
weak solution in the distributional sense. A bounded measurable function u(x, t) is a
weak solution if

dxdt+ j uo{x)φ(xi0) = 0 (1.3)
ί = 0

for any smooth function φ(x, t) with compact support in ί^O.
In [1], Glimm introduces a difference scheme for solving (1.1), (1.2). We now

describe briefly the Glimm scheme. Choose any mesh lengths r, s, r/s bounded,
which satisfy the Courant-Friedrich-Lewy condition:

r
- > max \λXu)\
S ~ ί = l , 2 n I V n
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