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Abstract. Dyson’s power counting theorem is extended to the case where some of the mass
parameters vanish. Weinberg’s ultraviolet convergence conditions are supplemented by infrared con-
vergence conditions which combined are sufficient for the convergence of Feynman integrals.

1. Introduction

In the theory of renormalization Dyson’s power counting theorem plays a
decisive part [1-3]. The contribution of a proper Feynman diagram to a Green’s
function has the form

J=[dkR(k, p)
P
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where
k=(ky...ky), p=(py...pn),

kj:(kjokjlkakﬂ)’ pj:(ijlepjzpjs)a
dk=dk,...dk,,, dkj...dkjodkjldkadkj3 ,
m;=0, n;>0.

(12)

k;and p; are Minkowski vectors with the metric (41, — 1, — 1, —1). The vectors
I; are linear combinations

1;=K (k) + P;(p) (1.3)
of the vectors ky,...,k,, and p,, ..., py with K;%0. P is a polynomial in the com-
ponents of k and p. The denominator of R is the common denominator of the
unrenormalized integrand and the subtraction terms.

If all masses are non-zero Weinberg’s version of the power counting theorem
can be used to prove that the integral (1.1) is absolutely convergent provided the
renormalized integrand R has been constructed according to Bogoliubov’s sub-
traction rules [3,4]. It can further be shown that the limit e— +0 exists as a
covariant tempered distribution.

So far the power counting theorem has only been stated for non-vanishing
masses. In the present paper Weinberg’s ultraviolet convergence conditions are



