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Abstract. It is proved that the relative entropy for a quantum system is non-increasing
under a trace-preserving completely positive map. The proof is based on the strong sub-
additivity property of the quantum-mechanical entropy.

The object of this note is to prove that the relative entropy functional
for a finite quantum system is nonincreasing under a trace-preserving
completely positive map of the state space into itself. This theorem is a
generalization of an earlier result for expectations [ 1] (since expectations
are completely positive maps [2]) which is in its turn a generalization
of a well-known theorem in information theory [3, 4]. The proof is based
on the strong subadditivity property of the quantum-mechanical entropy
which was derived recently by Lieb and Ruskai [5] from certain trace
inequalities proved by Lieb [6] and, in an alternative way, by Epstein [7].

The physical interest of completely positive maps lies in the theory
of measurements and the operational approach to quantum mechanics
[8, 9. We will give some simple arguments that the operations should
be chosen to be completely positive.

Denote by B(#) the bounded operators in a separable Hilbert
space #, by T(s) the trace class operators in &# and by T, () the
positive elements in T(s#). Furthermore, let ./, be the algebra of nx n
complex matrices. )

Let A,Be T.(#). Define the operator-valued entropy by S(A)
=—Aln A

Let Ae(0, 1) and define

S (AIB)=A"1[S(A4+(1—A)B)—A8(4)— (1 — )S(B)]
S.(A|By=TrS,(A|B).
The relative entropy is defined by
S(4]B)=1lim S,(4|B).

From Lemma 4 of [10] it follows that this definition is equivalent
to that used in [1, 10].

We know that § 2(A]B) is positive [ 10], hence the trace is well-defined,
eventually infinite. When A0, S,(4|B) is monotonously increasing,



