Representations of the CCR in the $\left(\phi^{4}\right)_{3}$ Model: Independence of Space Cutoff

Jean-Pierre Eckmann
Département de Physique Théorique
Université de Genève
Received October 21, 1971

Abstract

The algebra of observables for the renormalized ϕ^{4} interaction in 3-dimensional space-time is constructed. It is shown that the von Neumann algebras associated with observables in a bounded region B are independent of the space cutoff which is used in the construction of a Hamiltonian for this interaction. This result is shown to be useful in the construction of a translation invariant ϕ^{4} theory in three dimensions. It also gives a physical criterion for the equivalence of non-Fock representations of the canonical commutation relations.

I. Introduction

Recently, there has been some interest in a certain class of non-Fock representations of the canonical commutation relations (CCR) which occurs in a natural way in the construction of a dense domain for a Hamiltonian for the $: \phi^{4}$: interaction in $2+1$ dimensional space-time.

This construction was initiated by Glimm [10], who considered an interaction

$$
\begin{equation*}
H_{\sigma}(g)=H_{0}+\int: \phi_{\sigma}^{4}:(x) g(x) d^{2} x+M_{\sigma}+E_{\sigma} \tag{1.1}
\end{equation*}
$$

with a momentum cutoff σ (the momenta occurring in the interaction are bounded in absolute value by σ) and with a space cutoff g which is a smooth function with compact support. H_{0} is the free Hamiltonian and $\phi_{\sigma}(x)$ is the cutoff free boson field at time zero:

$$
\phi_{\sigma}(x)=\int_{|k| \leqq \sigma} e^{i k x}\left(k^{2}+m_{0}^{2}\right)^{-1 / 4}\left(a^{*}(k)+a(-k)\right) d^{2} k, \quad m_{0}>0 .
$$

M_{σ} and E_{σ} are the mass and the additive counterterms respectively whose definitions are suggested by perturbation theory. In order to define a Hamiltonian $H_{\infty}(g)$ in the limit $\sigma \rightarrow \infty$, Glimm used a modified, truncated version of the formal wave operator. This operator $T_{\sigma}(g)$ is called a dressing transformation. His construction is summarized in the following

Theorem 1.1 (Glimm [10]). Let $\Lambda_{\sigma}(g)=\left\|H_{0}^{-1} \int: \phi_{\sigma}^{4}:(x) g(x) d^{2} x \Omega\right\|^{2}$, where Ω is the Fock vacuum. There exists a family $T_{\varrho \sigma}(g)$ of dressing

[^0]
[^0]: 1 Commun math Phys., Vol. 25

