Representations of the CCR in the $(\phi^4)_3$ Model: Independence of Space Cutoff

JEAN-PIERRE ECKMANN

Département de Physique Théorique Université de Genève

Received October 21, 1971

Abstract. The algebra of observables for the renormalized ϕ^4 interaction in 3-dimensional space-time is constructed. It is shown that the von Neumann algebras associated with observables in a bounded region *B* are independent of the space cutoff which is used in the construction of a Hamiltonian for this interaction. This result is shown to be useful in the construction of a translation invariant ϕ^4 theory in three dimensions. It also gives a physical criterion for the equivalence of non-Fock representations of the canonical commutation relations.

I. Introduction

Recently, there has been some interest in a certain class of non-Fock representations of the canonical commutation relations (CCR) which occurs in a natural way in the construction of a dense domain for a Hamiltonian for the $:\phi^4:$ interaction in 2+1 dimensional space-time.

This construction was initiated by Glimm [10], who considered an interaction

$$H_{\sigma}(g) = H_0 + \int :\phi_{\sigma}^4: (x) g(x) d^2x + M_{\sigma} + E_{\sigma}$$
(1.1)

with a momentum cutoff σ (the momenta occurring in the interaction are bounded in absolute value by σ) and with a space cutoff g which is a smooth function with compact support. H_0 is the free Hamiltonian and $\phi_{\sigma}(x)$ is the cutoff free boson field at time zero:

$$\phi_{\sigma}(x) = \int_{|k| \le \sigma} e^{ikx} (k^2 + m_0^2)^{-1/4} (a^*(k) + a(-k)) d^2k, \quad m_0 > 0.$$

 M_{σ} and E_{σ} are the mass and the additive counterterms respectively whose definitions are suggested by perturbation theory. In order to define a Hamiltonian $H_{\infty}(g)$ in the limit $\sigma \to \infty$, Glimm used a modified, truncated version of the formal wave operator. This operator $T_{\sigma}(g)$ is called a dressing transformation. His construction is summarized in the following

Theorem 1.1 (Glimm [10]). Let $\Lambda_{\sigma}(g) = ||H_0^{-1} \int :\phi_{\sigma}^4:(x)g(x)d^2x\Omega||^2$, where Ω is the Fock vacuum. There exists a family $T_{\rho\sigma}(g)$ of dressing

1 Commun math Phys., Vol. 25