Non-factor Quasi-free States of the CAR-algebra

J. MANUCEAU* and A. VERBEURE

Instituut voor Theoretische Fysica, Universiteit Leuven, Leuven (Belgium)

Received April 10, 1970

Abstract. A necessary and sufficient condition is given in order that a quasi-free state on the Clifford algebra $\overline{\mathscr{A}(H,s)}$ build on a real separable Hilbert space (H,s) be a factor state.

I. Introduction

Let (H, s) be a real Hilbert space which is separable (i.e. H is a real vector space and s a real scalar product on H). Let $\overline{\mathscr{A}(H, s)}$ be the CARalgebra constructed on (H, s) i.e. it is the C^* -algebra generated by the elements $B(\psi)$ where $\psi \to B(\psi)$ is a real linear map of H into $\overline{\mathscr{A}(H, s)}$ satisfying the anticommutation relations

$$[B(\psi), B(\varphi)]_+ = 2s(\psi, \varphi)I$$

for all ψ and φ of H; I is the unit element in $\overline{\mathscr{A}(H,s)}$.

The quasi-free states ω_A on $\overline{\mathscr{A}(H,s)}$ are those states which are completely determined by an operator A on H such that for all $\psi, \varphi \in H$

$$\omega_A(B(\psi) B(\phi)) = s(\psi, \phi) + i s(A \psi, \phi), \qquad (1)$$

$$s(A\psi, \varphi) = -s(\psi, A\varphi) \quad \text{or} \quad A^+ = -A,$$
 (2)

$$||A|| \le 1. \tag{3}$$

For more details see (1).

A state on a C^* -algebra is called factor state if it induces a factor G.N.S. representation. In this note we prove that ω_A is not a factor state if and only if the dimension of the kernel of A is odd and

$$\operatorname{Tr}[1-(A^*A)^{\frac{1}{2}}]<\infty$$

II. The Theorem

Among the set of quasi-free states ω_A we distinguish two cases: let \mathfrak{M}_A be the kernel of the operator A, then:

- 1. dimension of \mathfrak{M}_A is even or infinite,
- 2. dimension of \mathfrak{M}_A is odd.

^{*} On leave of absence of Université d'Aix-Marseille, Fac. Sc. St. Charles, Marseille 3° (France).