A Gårding Domain for Quantum Fields

MICHAEL C. REED

Department of Mathematics, Princeton University

Received June 25, 1969

Abstract. In all representations of the canonical commutation relations, there is a common, invariant domain of essential self-adjointness for quantum fields and conjugate momenta.

1. Introduction

Let $U_k(s)$, $V_k(t)$ be one-parameter continuous unitary groups on a separable Hilbert space X, satisfying the relations:

$$U_k(s) V_l(t) = e^{ist \delta_{kl}} V_l(t) U_k(s) ,$$

$$[U_k(s), U_l(t)] = 0 = [V_k(s), V_l(t)]$$
(1.1)

for all k, l = 1, 2, ... and $s, t \in R$. Such a structure is called a representation of the Weyl relations. In this paper we prove the following theorem (whose consequences for Quantum Field Theory are discussed in § 5).

Theorem 1.1. Let $(\{U_k(s), V_k(t)\}_{k=1}^{\infty}, X)$ be a representation of the Weyl relations; denote by p_k the generator of $U_k(s)$, by q_k the generator of $V_k(t)$. Then there exists a Banach space, τ , of sequences of real numbers and a domain D, dense in X, such that for all $\{c_k\}_{k=1}^{\infty} \in \tau$,

- 1) $\sum_{k=1}^{\infty} c_k q_k$, $\sum_{k=1}^{\infty} c_k p_k$ are well-defined and essentially self-adjoint on D,
- 2) $\sum_{k=1}^{\infty} c_k q_k D \subset D, \sum_{k=1}^{\infty} c_k p_k D \subset D.$
- 3) If $\{c_k^n\}_{k=1}^{\infty} \xrightarrow{\tau} \{c_k\}_{k=1}^{\infty}$ and $\varphi \in D$, then

$$\sum_{k=1}^{\infty} c_k^n q_k \varphi \to \sum_{k=1}^{\infty} c_k q_k \varphi \ \ and \ \sum_{k=1}^{\infty} c_k^n p_k \varphi \to \sum_{k=1}^{\infty} c_k p_k \varphi.$$

We remark that if we were concerned with only a finite number of q_k and p_k , the conclusions of the theorem would follow from well-known work of L. Gårding on representations of Lie groups. For the Fock representation the theorem was proven by J. Cook [2]. In our proof we use heavily the classification of all representations achieved by Gårding and Wightman [4]; it is briefly described in § 2.

The proof of the theorem is contained in § 3 and § 4. In § 3 we construct a dense set of vectors $D_1 \subset X$. The construction is done so that for