The Yukawa Coupling of Quantum Fields in Two Dimensions. II*

JAMES GLIMM

Massachusetts Institute of Technology Cambridge, Massachusetts

Received April 15, 1967

Abstract. The Yukawa coupling in two dimensional space time is considered. A space cutoff is introduced in the interaction term V, so that the renormalized Hamiltonian $H_{\rm ren}$ is a rigorously defined bilinear form in the Fock Hilbert space. The main result is that $H_{\rm ren}$ is positive provided the finite part of the renormalization terms are suitably chosen. As a consequence, the Schrödinger equation $(i\partial/\partial t - H_{\rm ren})\Phi = 0$ can be solved.

Contents

§ 1.	Discussion of the Results	l
§ 2.	The Method of Proof	3
§ 3.	Estimates for the Error Terms	6
§ 4.	Estimates for the Error Terms, Continued	1
§ 5.	$Completion of the Proof. \dots \dots$	4

§ 1. Discussion of the Results

We study the energy operator in a model of Quantum Field Theory. The model consists of bosons and fermions interacting with a Yukawa coupling. We consider this model in two dimensional space time and we introduce a space cut-off in the interaction energy V. Thus we write

$$V = \int_{t=0} : \Psi^{\dagger}(x) \Psi(x) : \Phi(x) h(x) dx , \qquad (1.1)$$

for h a function which is zero when |x| is large. (The limit, $h \rightarrow 1$, would remove the space cutoff.) We studied the same problem in [2]; hereafter we refer to this paper as I. We showed that the renormalized total energy operator

 $H_{\rm ren} = H_0 + V + (\text{infinite counter terms})$ (1.2)

was rigorously defined as a bilinear form on a domain $\mathscr{D} \times \mathscr{D}$, with \mathscr{D} dense in Fock space. The counter terms depend on two parameters, and these parameters take on infinite values. The parameters can be changed

^{*} This work was supported in part by the National Science Foundation, $\mathrm{GP}-6165.$