Degenerate Representations of Non-Compact Unitary Groups. II. Continuous Series

J. FISCHER* and R. RACZKA**

International Centre for Theoretical Physics, Trieste

Received June 1, 1966

Abstract. Three degenerate principal series of irreducible unitary representations of an arbitrary non-compact unitary group U(p, q) are derived. These series are determined by the eigenvalues of the first and second-order invariant operators, the former having a discrete spectrum and the latter a continuous one. The explicit form of the corresponding harmonic functions is derived and the properties of the continuous representations are discussed.

1. Introduction

In our previous paper [1] we obtained two degenerate principal series, $D_M^L(X_{+}^{p,q})$ and $D_M^L(X_{-}^{p,q})$, of irreducible unitary representations of an arbitrary non-compact unitary group U(p,q). These series have been realized in the Hilbert spaces of functions defined in the domains

$$X^{p,q}_{+} = U(p,q)/U(p-1,q) \quad ext{and} \quad X^{p,q}_{-} = U(p,q)/U(p,q-1) \quad (1.1)$$

respectively, which are homogeneous with respect to the action of the U(p, q) group (see [2]). The representation labels M and L determine the eigenvalues, M and λ , of the first and second-order invariant operators \hat{M} and $\Delta(X^{p,q})$ respectively and both possess a discrete spectrum.

In the present paper we investigate the properties of the continuous series of degenerate representations of the U(p, q) groups which are characterized by continuous values of λ and discrete values of M. We derive three such series of representations, the first two being related to the manifolds $X_{+}^{p,q}$ and $X_{+}^{p,q}$ given by (1.1) and the third being related to the manifold

$$X_0^{p,q} = U(p,q)/T^{p+q-2} \quad s \quad U(p-1,q-1) .$$
(1.2)

Here, T^{p+q-2} is the group of translations in the (p+q-2)-dimensional complex space C^{p+q-2} and \underline{s} means the semidirect product. As will be shown later, the homogeneous spaces $X^{p,q}_{\pm}$ and $X^{p,q}_{0}$ can be represented as certain hypersurfaces in the 2(p+q)-dimensional Minkowski space $M^{2p,2q}$.

^{*} On leave of absence from Institute of Physics of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia.

^{**} On leave of absence from Institute of Nuclear Research, Warsaw, Poland.