

## Classification of Bicovariant Differential Calculi on Quantum Groups of Type A, B, C and D

## Konrad Schmüdgen, Axel Schüler

Fachbereich Mathematik/Informatik, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany; E-mail: schmuedgen@mathematik.uni-leipzig.d400.de

Received: 5 January 1994

Abstract: Under the assumptions that q is not a root of unity and that the differentials  $du_j^i$  of the matrix entries span the left module of first order forms, we classify bicovariant differential calculi on quantum groups  $A_{n-1}$ ,  $B_n$ ,  $C_n$  and  $D_n$ . We prove that apart one dimensional differential calculi and from finitely many values of q, there are precisely 2n such calculi on the quantum group  $A_{n-1} = SL_q(n)$  for  $n \ge 3$ . All these calculi have the dimension  $n^2$ . For the quantum groups  $B_n$ ,  $C_n$  and  $D_n$  we show that except for finitely many q there exist precisely two  $N^2$ -dimensional bicovariant calculi for  $N \ge 3$ , where N = 2n + 1 for  $B_n$  and N = 2n for  $C_n$ ,  $D_n$ . The structure of these calculi is explicitly described and the corresponding ad-invariant right ideals of ker  $\varepsilon$  are determined. In the limit  $q \to 1$  two of the 2n calculi for  $A_{n-1}$  and one of the two calculi for  $B_n$ ,  $C_n$  and  $D_n$  contain the ordinary classical differential calculus on the corresponding Lie group as a quotient.

## **0. Introduction**

Non-commutative differential calculus is a basic tool for further applications of quantum groups and for studying non-commutative geometry on quantum spaces. A general framework for bicovariant differential calculi on quantum groups (Hopf algebras) is developed by S.L. Woronowicz [Wo2]. Following general ideas of A. Connes [C], differential forms are the basic objects of this theory. Examples of covariant differential calculi are constructed and studied (for instance) in [Wo1, Wo2, WZ, R2, CSWW, J, SWZ, Su and BM]. In general there are many non-isomorphic bicovariant differential calculi on a given quantum group, and no functorial method is known to construct a "natural" differential calculus as in classical differential geometry on Lie groups. The aim of this paper is to classify *all* bicovariant calculi in this way. Despite the rather extensive literature about differential calculi on quantum groups, the classification problem has been treated only in the special case N = 2, cf. [St, MH].

The aim of this paper is to classify (under certain assumptions) all bicovariant differential calculi on the quantum groups corresponding to the four series of