NEW RESULTS FOR COVERING SYSTEMS OF RESIDUE SETS

BY MARC A. BERGER, ALEXANDER FELZENBAUM AND AVIEZRI S. FRAENKEL

We announce some new results about systems of residue sets. A residue set $R \subset \mathbf{Z}$ is an arithmetic progression

$$R = \{a, a \pm n, a \pm 2n, \ldots\}.$$

The positive integer n is referred to as the *modulus* of R. Following Znám [21] we denote this set by a(n). We need several number-theoretic functions.

p(m)-the least prime divisor of a natural number m,

P(m)-the greatest prime divisor of m,

 $\Lambda(m)$ -the greatest divisor of m which is a power of a single prime:

$$\Lambda(m) = \max\{d \in \mathbf{Z}: d|m, d = p^s, prime\},\$$

 $f(m) = \sum_{j=1}^{l} s_j(p_j - 1) + 1$, where m has the prime factorization $m = p_1^{s_1} \cdots p_l^{s_l}$,

$$g(m) = \prod_{j=1}^{l} (1+x_j) - \sum_{j=1}^{l} x_j - 1$$
, where

$$x_j = \frac{\sum_{k=0}^{s_j-1} p_j^k}{p_j^{s_j} - \sum_{k=0}^{s_j-1} p_j^k}$$

and m has the above prime factorization,

 $\varphi(m)$ -Euler's totient function,

[x]-the greatest integer in x.

Recent general surveys on systems of residue sets are Porubský [21] and Znám [26]. Results and problems on residue sets appear also in Erdős and Graham [14] and Guy [16].

1. Disjoint covering systems [1, 2, 3, 6, 9, 10]. These are systems $\mathcal{D} = (a_1(n_1), \ldots, a_t(n_t)), t > 1$, which partition \mathbf{Z} . The multiplicity of a modulus $n = n_k$ is the number of sets in \mathcal{D} with that modulus. The multiplicity of \mathcal{D} is the maximum multiplicity of its moduli.

THEOREM 1. The multiplicity of any modulus $n = n_k$ is at least

$$m_1 = \min_{n_i \neq n} \Lambda\left(\frac{n}{(n, n_i)}\right).$$

The multiplicity of D is at least

(2)
$$m_2 = \left\lceil \frac{P(N)\varphi(N)}{N} \right\rceil + 1,$$

Received by the editors June 7, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 11A07, 11B75, 11H31, 11B25, 20D15, 20D60, 51A15.