ON THE YANG-MILLS-HIGGS EQUATIONS

BY CLIFFORD HENRY TAUBES¹

I. Introduction. The purpose of this note is to announce new results for the Yang-Mills-Higgs equations on R^3 . These SU(2) Yang-Mills-Higgs equations are a set of partial differential equations where the unknown is a pair, $c = (A, \Phi)$, with A a connection on the vector bundle $E = R^3 \times \mathfrak{su}(2)$ and Φ a section of E. Here $\mathfrak{su}(2)$ =Lie alg. SU(2). These equations are

(1)
$$D_A * F_A + [\Phi, D_A \Phi] = 0, \quad D_A * D_A \Phi = 0,$$

with boundary condition $\lim_{|x|\to\infty} |\Phi|(x) = 1$. Here, the notation follows [1]. That is, F_A is the curvature of A, D_A is the exterior covariant derivative on $\bigwedge T^* \otimes E$ and $[\cdot, \cdot]$ is the natural, graded bracket on $\bigwedge T^* \otimes E$: If ω , η are, respectively, E-valued p,q forms, then $[\omega,\eta] = \omega \wedge \eta - (-1)^{pq} \eta \wedge \omega$. The ** in (1) is the Hodge star on $\bigwedge T^*$ from the Euclidean metric on T^* . The norm $|\cdot|$ on $T^* \otimes E$; is that induced from the Euclidean metric on T^* and the Killing metric on SU(2).

Equation (1) is the variational equation of an action functional

(2)
$$A(A, \Phi) = \frac{1}{2} \int_{R^3} \{ |F_A|^2(x) + |D_A \Phi|^2(x) \} d^3x.$$

One is to consider A as a function on the set

(3)
$$\mathcal{C} = \{ \text{smooth } (A, \Phi) : \mathcal{A}(A, \Phi) < \infty \text{ and } 1 - |\Phi|(x) \in L^6(\mathbb{R}^3) \}.$$

 $\mathcal C$ is topologized as follows [2]: Let θ denote the flat, product connection on E. The topology of $\mathcal C$ is defined to be the weakest for which the map sending $C = (A, \Phi) \in \mathcal C$ to

$$(A - \theta, \mathcal{A}(c)) \in \Gamma(T^* \otimes E) \times \Gamma(E) \times [0, \infty)$$

is continuous.

The topological group

(4)
$$\mathcal{G} = \{\text{smooth, unitary automorphisms of } E\},\\ = C^{\infty}(R^3; SU(2))/\{\pm 1\}$$

acts continuously on $\mathcal C$ and leaves $\mathcal A$ and (1) invariant. The subgroup $\mathcal G_0=\{g\in\mathcal G\colon g(0)=1\}$ acts freely on $\mathcal C$. Let $\mathcal B=\mathcal C/\mathcal G_0$ denote the quotient. The functional $\mathcal A$ descends as a continuous, SO(3) invariant function on $\mathcal B$.

The relationship between A and B is described in the following theorems.

Received by the editors October 28, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35Q20, 58G20, 81E10; Secondary 55Q52.

¹NSF Postdoctoral Fellow in Mathematics