[Sto] W. Stoll, Invariant forms on Grassmann manifolds, Ann. of Math. Studies, No. 89, Princeton Univ. Press, Princeton, N.J., 1977.
[Ver] D.-N. Verma, Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4) 4 (1971), 393-398.

Robert A. Proctor

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 10, Number 1, January 1984
©(O1984 American Mathematical Society
$0273-0979 / 84 \$ 1.00+\$.25$ per page

Angular momentum in quantum physics: Theory and application, by L. C. Biedenharn and J. D. Louck, Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Company, Reading, Mass., xxix + 716 pp., \$54.50. ISBN 0-2011-3507-8

The Racah-Wigner algebra in quantum theory, by L. C. Biedenharn and J. D. Louck, Encyclopedia of Mathematics and its Applications, Vol. 9, AddisonWesley Publishing Company, Reading, Mass., lxxxviii +534 pp., $\$ 54.50$ ISBN 0-2011-3508-6

Angular momentum is a physical quantity which appeared first in classical mechanics. Consider indeed the simplest case of a particle moving in \mathbf{R}^{3}. The observables of this physical system are ($C^{\infty}-$) functions from $T^{*} \mathbf{R}^{3} \simeq \mathbf{R}^{6} \equiv$ $\left\{(x, p) \mid x, p \in \mathbf{R}^{3}\right\}$. The Poisson bracket $\{\cdot \cdot \cdot\}$ associates to every pair (f, g) of such functions the function $\{f, g\}$ defined by

$$
\begin{equation*}
\{f, g\} \equiv \sum_{k=1}^{3}\left(\partial_{x^{k}} f \cdot \partial_{p^{k}} g-\partial_{x^{k}} g \cdot \partial_{p^{k}} f\right) \tag{1}
\end{equation*}
$$

Notice, in particular, that for all $k, l=1,2,3$,

$$
\begin{equation*}
\left\{x^{k}, x^{l}\right\}=0=\left\{p^{k}, p^{l}\right\} ;\left\{x^{k}, p^{l}\right\}=\delta^{k l} 1 \tag{2}
\end{equation*}
$$

Then the angular momentum $L \equiv x \times p$ is the triple (L^{1}, L^{2}, L^{3}) of functions

$$
\begin{equation*}
L^{j}(x, p) \equiv x^{k} p^{l}-x^{l} p^{k} \tag{3}
\end{equation*}
$$

where (j, k, l) is any triple of indices obtained from $(1,2,3)$ by cyclic permutations. The Poisson brackets between the components of the angular momentum are

$$
\begin{equation*}
\left\{L^{j}, L^{k}\right\}=L^{l} \tag{4}
\end{equation*}
$$

where again (j, k, l) are cyclic permutations of $(1,2,3)$.
The angular momentum appeared in the quantum mechanical description of a particle, moving similarly in \mathbf{R}^{3}, as the triple $L=\left(L^{1}, L^{2}, L^{3}\right)$ of operators,

