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Let D be the period space of algebraic K3 surfaces, the generic point of 

which corresponds to either a sextic double plane or a quartic surface [1] , [2]. 

THEOREM 1. To every point of D, there corresponds a unique K3 surface. 

The uniqueness has been proved by Piatetskiî-Sapiro and Safarevic. The 
proof of existence is outlined below. 

Let o be the closed point of A = Spec C[[t] ]. Let An be the finite 
covering of A obtained by extracting an nth. root of t; let on be the closed point 
of An. A family of surfaces over An is a flat, projective map ƒ: Xn —> An such 
that the generic fiber is smooth, connected, and two dimensional. The special 
fiber over on will be denoted by Xn. A family of surfaces is said to have 
ordinary singularities if Xn is reduced and has nonsingular components crossing 
normally. A modification of a family ƒ: X —> A is a family fn : Xn —> An 

together with an isomorphism of the generic fiber of fn with the pull-back of 
the generic fiber of/. Recall that a family of sextic double planes or quartic 
surfaces, ƒ: X —> A, induces a map of the generic point of A into D\ the map 
extends to a map n: A —> D if and only if the monodromy group is finite [2]. 
The existence part of Theorem 1 follows from 

THEOREM l'.1 Given any family f.X —> A of sextic double planes such 

that the monodromy group is finite, there exists a modification fn\ Xn —> An 

for some n such that the special fiber Xn is reduced, irreducible and has at most 

rational double points as its singularities. 

THEOREM l". Given any family f:X —> A of quartic surfaces such that 

the monodromy group is finite, there exists a modification fn\ Xn —• An for 

some n, with ordinary singularities, such that a component of Xn is a K3 

surface whose periods correspond to the point ir(o) in D. 

It follows from Mumford's Geometric Invariant Theory [4] that in order 
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This theorem has also been proved by E. Horikawa [3 ] . 
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