PHASE TRANSITIONS IN $P(\phi)_2$ QUANTUM FIELDS

BY J. GLIMM,¹ A. JAFFE² AND T. SPENCER¹

Communicated by Daniel W. Stroock, May 17, 1976

Certain models in quantum field theory can be defined by a generalized random process $\phi(f) = \int \phi(x) f(x) dx$ for $f \in S(\mathbb{R}^d)$ satisfying the following conditions [3]: (a) Regularity. The expectation of $e^{\phi(f)}$ is entire analytic on $S(\mathbb{R}^d)$; (b) Euclidean invariance (including reflections) of the underlying measure $d\mu$. This means that

$$\int \left[\prod_{i} \phi(f_{i})\right] d\mu = \int \left[\prod_{i} \phi(\eta f_{i})\right] d\mu$$

Here $(\eta f)(x) = f(\eta^{-1}x)$ and η belongs to the Euclidean group. This identity induces a unitary transformation T_{η} on the space $E = L_2(d\mu)$ of random variables. (c) Reflection positivity. Let r denote reflection in the x_0 plane, and let v be a function of the random variables $\{\phi(f)\}$ where suppt f lies in the half space $x_0 > 0$. Then

(2)
$$\int \overline{v}(T_r v) \, d\mu \ge 0.$$

This final condition enables us to define the Hilbert space H (which plays the role of L_2 of the state space) and a contraction semigroup e^{-tH} (which defines the transition probabilities for the process). The inner product on H is given by (2) after dividing out by the space of null vectors. The semigroup e^{-tH} arises from translation in the $x_0 = t$ direction.

The simplest example of a process satisfying the above conditions is the Gaussian process whose generating functional is

(3)
$$\int e^{i\varphi(f)} d\mu_0 = \exp(-\frac{1}{2}\langle f, (-\Delta+1)^{-1}f \rangle) L^2.$$

This process is known as the Ornstein-Uhlenbeck process. For d = 1, 2 we consider the following limiting process:

(4)
$$\int e^{i\phi(f)} d\mu^{\pm} = \lim_{\Lambda \uparrow R^2} \frac{\int e^{i\phi(f)} \exp(-P_{\Lambda}) \exp(-Q_{R^2 \setminus \Lambda}^{\pm}) d\mu_{0}}{\int \exp(-P_{\Lambda}) \exp(-Q_{R^2 \setminus \Lambda}^{\pm}) d\mu_{0}}$$

AMS (MOS) subject classifications (1970). Primary 81A18.

Copyright © 1976, American Mathematical Society

¹Supported in part by the National Science Foundation under Grant MPS74-13252. ²Supported in part by the National Science Foundation under Grant MPS75-21212.