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Certain models in quantum field theory can be defined by a generalized ran-
dom process ¢(f) = [d(x) f(x) dx for f € S(R?) satisfying the following condi-
tions [3]: (a) Regularity. The expectation of e®(/) is entire analytic on S(R%);
(b) Euclidean invariance (including reflections) of the underlying measure d u.

This means that
[ [H¢(f,~)] du= | [riI¢(nf,-)] du.

i

Here (nf)(x) = f(n~'x) and n belongs to the Euclidean group. This identity
induces a unitary transformation T, on the space £ = L,(du) of random variables.
(c) Reflection positivity. Let r denote reflection in the x, plane, and let v be a
function of the random variables {¢( f)} where suppt f lies in the half space

Xy > 0. Then

@ [ 3,0 du>o0.

This final condition enables us to define the Hilbert space H (which plays
the role of L, of the state space) and a contraction semigroup e~ *H (which de-
fines the transition probabilities for the process). The inner product on # is given
by (2) after dividing out by the space of null vectors. The semigroup e~ ¥ arises
from translation in the x, = ¢ direction.

The simplest example of a process satisfying the above conditions is the
Gaussian process whose generating functional is

3) [P dpy = exp(~%(f, (—A + D7 )L2.

This process is known as the Ornstein-Uhlenbeck process. Ford = 1, 2 we con-
sider the following limiting process:

J e?Wexp(— P, )exp(— Q;z\A) dug

4) fei¢(f) du* = lim
AR® [ exp(=P)exp(=Q s, ) dit
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