# ONE-SIDED INEQUALITIES FOR THE SUCCESSIVE DERIVATIVES OF A FUNCTION 

BY ALFRED S. CAVARETTA, JR.<br>Communicated by R. K. Miller, November 21, 1975

We fix an integer $n \geqslant 2$ and consider the class $F$ of bounded continuous functions on the positive $x$-axis satisfying
(i) $-1 \leqslant f(x) \leqslant 1$ for $x \in R^{+}$,
(ii) $f^{(n-1)}(x)$ is absolutely continuous on $R^{+}$,
(iii) $f^{(n)}(x) \leqslant 1$ a.e. on $R^{+}$.

Under these conditions on $f$, our goal is to establish best possible inequalities for the intermediate derivatives $f^{(j)}(x)$. We thus extend the work begun by Landau, further developed by Schoenberg and Cavaretta, and by Hörmander [4], [5], [2].

To settle our question for the class $F$, we need, as extremal functions, the monosplines of R.S. Johnson. A monospline of degree $n$ with $k$ knots is a function of the form

$$
M(x)=\frac{x^{n}}{n!}+\sum_{i=0}^{n-1} a_{i} x^{i}+\sum_{i=1}^{k} c_{i}\left(x-\xi_{i}\right)_{+}^{n-1}
$$

where the $a_{i}, c_{i}$, and $\xi_{i}$ are freely chosen real parameters. We note that $M^{(n-1)}(x)$ consists of $k+1$ straight line segments, each of slope 1 . Considering such monosplines restricted to [-1, 1], Johnson [3] proves the following

Theorem. There exists a uniquely determined monospline $M_{n, k}(x)$ having precisely $n+2 k+1$ points of equioscillation on $[-1,1]$. In addition, $M_{n, k}$ has least sup norm on $[-1,1]$; i.e., $\left\|M_{n, k}\right\|_{\infty} \leqslant\|M\|_{\infty}$ with equality only if $M=M_{n, k}$.

The relevance of these functions to our class $F$ becomes apparent after we make a preliminary change of scale and origin. We consider $f(x)=a M_{n, k}(b x)$ $(a>0, b>0)$ and determine $a=a_{n, k}$ and $b=b_{n, k}$ so that $\|f\|_{\infty}=1$ on $\left[-b^{-1}\right.$, $\left.b^{-1}\right]$ and $f^{(n)}(x)=1$ except at its knots. Then define $B_{n, k}(x)=a M_{n, k}(b x-1)$ on the interval $\left[0,2 b^{-1}\right]$. In this fashion we obtain the monospline $B_{n, k}$ which on [ $0,2 b^{-1}$ ] is of norm 1 and has precisely $n+2 k+1$ points of equioscillation there. By elementary zero counting arguments, one readily verifies that $\operatorname{sign} B_{n, k}^{(j)}(0)=(-1)^{n+j}$.

With these preliminaries, we can now state the main theorem and its corollary.

