# PROOF OF A CONJECTURE OF ASKEY ON ORTHOGONAL EXPANSIONS WITH POSITIVE COEFFICIENTS 

BY WILLIAM F. TRENCH<br>Communicated by Walter Gautschi, May 22, 1975

We prove the following theorem, which was conjectured by R. Askey [1], [2].

Theorem 1. Let $\left\{p_{n}(x)\right\}$ and $\left\{q_{n}(x)\right\}$ be polynomials orthogonal over $[0, \infty)$ with respect to distributions $d u(x)$ and $x^{c} d u(x)(c>0)$, respectively, normalized so that

$$
\begin{equation*}
p_{i}(0)>0, \quad q_{i}(0)>0, \quad i=0,1, \ldots \tag{1}
\end{equation*}
$$

Then the coefficients $\left\{a_{j n}\right\}$ in the expansions

$$
\begin{equation*}
q_{n}(x)=\sum_{j=0}^{n} a_{j n} p_{j}(x), \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

are all positive.
It is to be understood here that $d u(x)$ has moments of all orders on $[0, \infty)$, and that $n \leqslant N-1$ if $d u(x)$ is a discrete distribution over only $N$ points.

Using different arguments, Askey [1] and the author [4] have shown that the conclusion of this theorem follows from classical results if $c$ is a positive integer, and, allowing for a difference in normalization, results obtained in [4] imply also that the coefficients in the "inverse" expansion, $p_{n}(x)=$ $\Sigma_{j=0}^{n} b_{j n} q_{j}(x)$, satisfy $(-1)^{n-j} b_{j n} \geqslant 0$ if $c$ is a positive integer, but that this does not hold for all positive $c$.

It suffices to prove Theorem 1 for $0<c<1$, since its conclusion follows for any positive $c$ from finitely many successive applications of this restricted result. We confine our attention to this case.

The roots of $p_{i}(x)$ and $q_{i}(x)$ are positive; therefore, (1) and Descartes' rule of signs imply that

$$
\begin{equation*}
(-1)^{r} p_{i}^{(r)}(0) \geqslant 0, \quad(-1)^{r} q_{i}^{(r)}(0) \geqslant 0, \quad 0 \leqslant r \leqslant i \tag{3}
\end{equation*}
$$

This is needed below.
Lemma. Under the assumptions of Theorem 1,

$$
\begin{equation*}
(-1)^{j} a(a-1) \cdots(a-j+1) \int_{0}^{\infty} x^{a} p_{j}(x) d u(x)>0 \tag{4}
\end{equation*}
$$

