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0. Introduction. Here we briefly sketch the background of the problem 
to be considered, and refer to Folland-Kohn [4] for definitions and proofs. 

Let X be the boundary of a strongly pseudoconvex region in a complex 
manifold of complex dimension n + l, or more generally a real manifold 
of dimension 2n+l with a strongly pseudoconvex partially complex 
structure. We then have the tangential Cauchy-Riemann complex 

0 —> A0-0 -A> A0-1 - ^ > • • • - ^ > A°>n —> 0 

where A0'*' is the space of /-forms of purely antiholomorphic type. If we 
impose a Riemannian metric on X, we can form the formal adjoint 
êh of Sb and thence the Laplacian •&=3Ö#&+#03Ö . [jb is nonelliptic; 
however, according to a theorem of Kohn, for l^j^n— 1, •& satisfies 
the estimates 

(i) H\\s+i ^ c9(\\nb4>\\. + MU), s = o, l , 2 , • • •, 
for all $ e A0,j with compact support. (Here || ||s is the L2 Sobolev norm 
of order s.) These estimates imply that •& is hypoelliptic; moreover, if X 
is compact, the nullspace ^V of •& is finite-dimensional and there is an 
operator G on A°'>' satisfying 

\\GHs+1^c8U\\8 # e A ° ' ' , j = 0 , l , 2 , " - ) 
and 

where P is the orthogonal projection onto JV. 
Kohn's method unfortunately gives no clue as to how to compute G. 

Our purpose here is to construct G (modulo smoothing operators) as an 
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