SOME RESULTS ON THE CENTER OF A RING WITH POLYNOMIAL IDENTITY

BY LOUIS ROWEN
Communicated by Nathan Jacobson, August 10, 1972

Introduction. The purpose of this paper is to provide a fresh outlook to various questions on rings with polynomial identity by examining the centers of such rings. This approach yields the interesting result that any nonzero ideal of a semiprime ring with polynomial identity intersects the center nontrivially (Theorem 2).

There are at least two interesting consequences to Theorem 2: a generalization of Wedderburn's theorem (any semiprimitive ring with polynomial identity, whose center is a field, is simple) and a strengthening of Posner's theorem [1] (any prime ring with a polynomial identity has a simple ring of quotients whose center is the quotient field of the center of the prime ring).

The proofs are elementary modulo Jacobson [3]. Of course rings are not necessarily commutative and for the sake of simplicity we assume a unit 1.

The key argument in this paper is an application of Formanek's central polynomials for matrix algebras over a field, whose important properties are [2]: Let M_{n} be an $n \times n$ matrix algebra over an arbitrary field. Then there exists a polynomial $g_{n}\left(X_{1}, \ldots, X_{m}\right)$ which has coefficients in \boldsymbol{Z}; is homogeneous (degree >0) in every variable and linear in all but the first variable; takes values in the center for every specialization in M_{n}; and is nonvanishing for some specialization.

Lemma 1. $g_{n}\left(X_{1}, \ldots, X_{m}\right)$ is central, nonvanishing for any central simple algebra S of degree n over its center C.

Proof. Let us first consider C finite. Since by Wedderburn's structure theorem S is a matrix algebra over a division ring D which is finite dimensional over C, which is finite, we have D is finite and thus a field (Wedderburn's theorem on finite division rings [3, p. 183]). Thus $D=C$ and S is in fact a matrix algebra over C, a field, and g_{n} is by hypothesis a central, nonvanishing polynomial for S, so that there is nothing to prove.

So we may assume C is infinite. Again let S be a matrix algebra over D, a division ring finite dimensional over C. Let F be a splitting subfield

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 16A08, 16A12, 16A20, 16A38; Secondary 16A02, 16A18, 16A40, 16A88.

 Key words and phrases. Central polynomials, ideals of center, polynomial identity, prime ring, ring of quotients, semiprime ring, semiprimitive ring, semisimple ring.

