GENERALIZED PRODUCT THEOREMS FOR TORSION INVARIANTS WITH APPLICATIONS TO FLAT BUNDLES

BY DOUGLAS R. ANDERSON ${ }^{1}$

Communicated by E. H. Spanier, October 13, 1971
This note announces generalizations of the product theorems for Wall invariants and Whitehead torsions due to Gersten [5], Siebenmann [7, Chapter VII], and Kwun and Szczarba [6], and applies these theorems to study torsion invariants of the total space of a flat bundle. The generalized product theorems are described in $\S \S 1$ and 2 . The applications are found in $\S 3$.

These theorems were discovered in an attempt to understand more clearly the orientation phenomena discovered in [1] and [2] by concentrating attention on bundles in which "orientation" is a complete bundle invariant. The author would like to thank D. Sullivan whose use of the word "flat" in a private conversation stimulated this work.
0. Basic algebraic definitions and notations. Let R be a commutative ring with unit. (Usually $R=Z$, the ring of integers, or Q the rational numbers.) For any group $\pi, \mathfrak{P} R(\pi)$, and $\sum \mathfrak{P} R(\pi)$ will denote the category of finitely generated projective modules over $R(\pi)$, and the category with objects (P, f) with $P \in \mathfrak{P R}(\pi)$ and $f: P \rightarrow P$ and $R(\pi)$ isomorphism. A morphism $g:\left(P_{1}, f_{1}\right) \rightarrow\left(P_{2}, f_{2}\right)$ is an $R(\pi)$ homomorphism $g: P_{1} \rightarrow P_{2}$ such that $f_{2} g=g f_{1}$.
$K_{0} R(\pi)$ and $K_{1} R(\pi)$ will be usual algebraic K-theoretic groups (cf. [3, pp. 344-348]). [P] or [$P, f]$ will denote the class of P and (P, f) in $K_{0} R \pi$ and $K_{1} R \pi$ respectively. The quotient of $K_{1} R(\pi)$ by the subgroup $\pm \pi$ will be denoted Wh $R(\pi)$ and will be called the R-Whitehead group of π. When $R=Z$ this is the usual Whitehead group. If $j: \pi \rightarrow \pi^{\prime}$ is a homomorphism, j_{*} will denote any of the induced maps on K_{0}, K_{1}, or Wh .

Let A and B be groups and $\alpha: B \rightarrow$ Aut A be a homomorphism. Then $A \times{ }_{\alpha} B$ will denote the semidirect product of A and B with respect to α. As sets $A \times{ }_{\alpha} B=A \times B$. The multiplication on $A \times{ }_{\alpha} B$ is given by $(a, b)\left(a^{\prime}, b^{\prime}\right)$ $=\left(a \alpha(b)\left(a^{\prime}\right), b b^{\prime}\right)$. The functions $k: A \rightarrow A \times{ }_{\alpha} B, p: A \times{ }_{\alpha} B \rightarrow B$, and $s: B$ $\rightarrow A \times{ }_{\alpha} B$ given by $k(a)=(a, 1), p(a, b)=b$, and $s(b)=(1, b)$ are homomorphisms. α extends to a homomorphism, also denoted by $\alpha, \alpha: B$ \rightarrow Aut $R(A)$.

[^0]
[^0]: AMS 1970 subject classifications. Primary 57C10; Secondary 18F25.
 Key words and phrases. Whitehead torsion, Wall invariant, flat bundle.
 ${ }^{1}$ Partially supported by the NSF under grant number GP-29540.

