QUOTIENTS OF FINITE W^{*}-ALGEBRAS ${ }^{1}$

BY JøRGEN VESTERSTRØM

Communicated by C. C. Moore, May 18, 1970

1. In this note we present results concerning the following problem. Suppose M is a W^{*}-algebra and $J \subset M$ a uniformly closed two-sided ideal. Then the quotient algebra M / J is a C^{*}-algebra, and the problem is: What are the conditions that M / J be a W^{*}-algebra?

Since we can write M as a direct sum of a finite and a properly infinite W^{*}-algebra, we can discuss the two cases separately. In [3] and [4] Takemoto solved the problem for a properly infinite W^{*} algebra, that can be represented on a separable space. His theorem states that M / J is a W^{*}-algebra, if and only if J is ultra-weakly closed.
2. If M is finite the situation is quite different. There are "many" non-ultra-weakly closed ideals J for which the quotient M / J is a W^{*}-algebra. Indeed, Wright [5] and Feldman [1] proved that if J is a maximal ideal, M / J is a finite factor. This result was proved by a different method by Sakai in [2]. The following theorem generalizes that result.

Theorem 1. Let M be a finite and σ-finite W^{*}-algebra with center Z. Let J be a uniformly closed two-sided ideal satisfying the following conditions:
(i) J is an intersection of maximal ideals,
(ii) $Z / Z \cap J$ is a W^{*}-algebra,
(iii) $Z / Z \cap J$ is σ-finite.

Then M / J is a W^{*}-algebra.
As a partial converse we have
Theorem 2. If J is a uniformly closed two-sided ideal of the finite and σ-finite W^{*}-algebra M and M / J is a W^{*}-algebra, then J satisfies the conditions (i) and (ii) of Theorem 1.

Remark. If we assume that M can be represented on a separable

[^0]
[^0]: AMS 1970 subject classifications. Primary 46L10.
 Key words and phrases. W^{*}-algebra, von Neumann algebra, quotient.
 ${ }^{1}$ The results are contained in the author's doctoral dissertation at the University of Pennsylvania, and his supervisor is S. Sakai. The author is a research fellow at the University of Aarhus, Denmark.

