ON BOUNDARY REGULARITY FOR PLATEAU'S PROBLEM¹

BY WILLIAM K. ALLARD

Communicated by Herbert Federer, November 15, 1968

We state here sufficient conditions for certain minimal surfaces to be differentiable at boundary points.

Let m and n be integers with 1 < m < n. We adopt the notation of [3]. See also [2]. In particular, $I_m(R^n)$ is the group of m dimensional integral currents in R^n . If $T \in I_m(R^n)$, M(T) is the mass of T and ∂T is the boundary of T; if $a \in R^n$, $\Theta^m(||T||, a)$ is the m dimensional density of the variation measure ||T|| at a.

If $T \in I_m(\mathbb{R}^n)$, we say T is minimal if there exists r > 0 such that $M(T) \leq M(S+T)$ whenever $a \in \mathbb{R}^n$, $S \in I_m(\mathbb{R}^n)$, $\partial S = 0$ and spt $S \subset \{x: |x-a| < r\}$. Given $B \in I_{m-1}(\mathbb{R}^n)$ with $\partial B = 0$, it is shown in [3] that there exists $T \in I_m(\mathbb{R}^n)$ such that $\partial T = B$ and $M(T) \leq M(S+T)$ whenever $S \in I_m(\mathbb{R}^n)$ with $\partial S = 0$.

THEOREM. Suppose $T \in I_m(\mathbb{R}^n)$, T is minimal, $a \in \text{spt } \partial T$, $p \ge 2$, $\Theta^{m-1}(\|\partial T\|, a) = 1$ and spt ∂T intersects some neighborhood of a in a class p (real analytic) m-1 dimensional submanifold of \mathbb{R}^n .

- (1) If $\Theta^m(||T||, a) = 1/2$, then the intersection of spt T with some neighborhood of a is a subset of some class p-1 (real analytic) m dimensional submanifold of \mathbb{R}^n .
- (2) If there exist independent linear functionals α_i , $i=1, \cdots, n-m+1$, on \mathbb{R}^n such that either

spt
$$\partial T \subset \{x: \alpha_i(x-a) \geq 0, i=1,\cdots,n-m+1\},\$$

or there is r>0 such that

$$\{x: |x-a| < r\} \cap \operatorname{spt} T \subset \{x: \alpha_i(x-a) \ge 0, \\ i = 1, \dots, n-m+1\},$$

then $\Theta^{m}(||T||, a) = 1/2$.

COROLLARY. Suppose $p \ge 2$ and B is the m-1 dimensional integral current corresponding to some compact oriented class p (real analytic) m-1 dimensional submanifold N of \mathbb{R}^n . If N lies on the boundary of some uniformly convex open subset of \mathbb{R}^n and $T \in I_m(\mathbb{R}^n)$ is minimal

¹ This work was partially supported by the National Science Foundation, and part of it is contained in the author's doctoral thesis at Brown University.