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We state here sufficient conditions for certain minimal surfaces to 
be differentiable at boundary points. 

Let m and n be integers with l<m<n. We adopt the notation of 
[3]. See also [2]. In particular, Im(Rn) is the group of m dimensional 
integral currents in Rn. If TEIm(Rn), M(T) is the mass of T and dT 
is the boundary of T\ if aÇzRn, ©m(|| T\\, a) is the m dimensional den
sity of the variation measure |J r|| at a. 

If rGIm(Rn), we say T is minimal if there exists r > 0 such that 
M(T)^M(S+T) whenever aERn, SGIm(JRn), dS = 0 and spt S 
CZ{x: \x — a\ < r } . Given BÇzIm-\(Rn) with dB = 0, it is shown in 
[3] that there exists TEIm(Rn) such that dT = B and M(T) 
^M(S+T) whenever SEIm(Rn) with dS= 0. 

THEOREM. Suppose T(EIm(Rn)f T is minimal, a £ s p t dT, p^2, 
0m~1(||âr||, a) = l and spt dT intersects some neighborhood of a in a 
class p {real analytic) m — 1 dimensional submanifold of Rn. 

(1) If ©m(|| T\\, a) = 1/2, then the intersection of spt T with some neigh
borhood of a is a subset of some class p — \ (real analytic) m dimensional 
submanifold of Rn. 

(2) If there exist independent linear functionals au, i = l, • • • , 
n—m+l,onRn such that either 

spt dT C {x: cti(x — a) è 0, i = 1, • • • , n — m + l } , 

or there is r > 0 such that 

{x: \x-a\ <r} H spt T C {x: <*<(*- a) ^ 0, 

* = 1, • • • , » — m + l}, 

**e!»e»(||r||f a) = 1/2. 

COROLLARY. Suppose p^2 and B is the m —I dimensional integral 
current corresponding to some compact oriented class p (real analytic) 
m — \ dimensional submanifold N of Rn. If N lies on the boundary of 
some uniformly convex open subset of Rn and TÇzIm(R*) is minimal 

1 This work was partially supported by the National Science Foundation, and 
part of it is contained in the author's doctoral thesis at Brown University. 
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