TWO-SIDED IDEALS IN \boldsymbol{C}^{*}-ALGEBRAS

BY ERLING STØRMER

Communicated by R. Arens, October 28, 1966

If \mathfrak{A} is a C^{*}-algebra and \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{N} then so is $\mathfrak{F}+\mathfrak{F}$. The following problem has been proposed by J. Dixmier [1, Problem 1.9.12]: is $(\mathfrak{F}+\mathfrak{F})^{+}=\mathfrak{F}^{+}+\mathfrak{F}^{+}$, where \mathfrak{R}^{+} denotes the set of positive operators in a family \mathbb{R} of operators? He suggested to the author that techniques using the duality between invariant faces of the state space $S(\mathfrak{H})$ of \mathfrak{N} and two-sided ideals in \mathfrak{N}, as shown by E. Effros, might be helpful in studying it. In this note we shall use such arguments to solve the problem to the affirmative.

By a face of $S(\mathfrak{H})$ we shall mean a convex subset F such that if $\rho \in F, \omega \in S(\mathfrak{H})$ and $a \omega \leqq \rho$ for some $a>0$, then $\omega \in F . F$ is an invariant face if $\rho \in F$ implies the state $B \rightarrow \rho\left(A^{*} B A\right) \cdot \rho\left(A^{*} A\right)^{-1}$ belongs to F whenever $\rho\left(A^{*} A\right) \neq 0$ and $A \in \mathfrak{R}$. We denote by F^{\perp} the set of operators $A \in \mathfrak{A}$ such that $\rho(A)=0$ for all $\rho \in F$. If $\mathfrak{F} \subset \mathfrak{A}, \mathfrak{F}^{\perp}$ shall denote the set of states ρ such that $\rho(A)=0$ for all $A \in \mathfrak{F}$. E. Effros [2] has shown that the map $\mathfrak{Y} \rightarrow \mathfrak{S}^{\perp}$ is an order inverting bijection between uniformly closed two-sided ideals of \mathfrak{N} and w^{*}-closed invariant faces of $S(\mathfrak{H})$. Moreover, $\left(\Im^{\perp}\right)^{\perp}=\Im$, and $\left(F^{\perp}\right)^{\perp}=F$ when F is a w^{*}-closed invariant face. If \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{H} then $(\mathfrak{F} \cap \mathfrak{F})^{\perp}=\operatorname{conv}\left(\mathfrak{S}^{\perp}, \mathfrak{F}^{\perp}\right)$, the convex hull of \mathfrak{Y}^{\perp} and \mathfrak{F}^{\perp}, and $(\mathfrak{F}+\mathfrak{F})^{\perp}=\mathfrak{J}^{\perp} \cap \mathfrak{F}^{\perp}$. If A is a self-adjoint operator in \mathfrak{N} let \hat{A} denote the w^{*}-continuous affine function on $S(\mathfrak{H})$ defined by $\hat{A}(\rho)=\rho(A)$. It has been shown by R. Kadison, [3] and [4], that the map $A \rightarrow \hat{A}$ is an isometric order-isomorphism of the self-adjoint part of \mathfrak{A} onto all w^{*}-continuous real affine functions on $S(\mathfrak{H})$. Moreover, if \mathfrak{F} is a uniformly closed two-sided ideal in \mathfrak{N}, and ψ is the canonical homomorphism of \mathfrak{N} onto $\mathfrak{N} / \mathfrak{Y}$, then the map $\rho \rightarrow \rho \circ \psi$ is an affine isomorphism of $S(\mathfrak{H} / \Im)$ onto \mathfrak{S}^{\perp}. Thus the map $\psi(A) \rightarrow \hat{A} \mid \Im^{\perp}$ is an orderisomorphic isometry on the self-adjoint operators in $\mathfrak{H} / \mathfrak{Y}$. We shall below make extensive use of these facts. For other references see [1, §1].

Theorem. Let \mathfrak{A} be a C^{*}-algebra. If \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{A} then

$$
(\mathfrak{F}+\mathfrak{F})^{+}=\mathfrak{S}^{+}+\mathfrak{F}^{+} .
$$

In order to prove the theorem we may assume \mathfrak{A} has an identity, denoted by I. We first prove a

