TWO-SIDED IDEALS IN C*-ALGEBRAS

BY ERLING STØRMER

Communicated by R. Arens, October 28, 1966

If \mathfrak{A} is a C^* -algebra and \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{A} then so is $\mathfrak{F} + \mathfrak{F}$. The following problem has been proposed by J. Dixmier [1, Problem 1.9.12]: is $(\mathfrak{F} + \mathfrak{F})^+ = \mathfrak{F}^+ + \mathfrak{F}^+$, where \mathfrak{F}^+ denotes the set of positive operators in a family \mathfrak{F} of operators? He suggested to the author that techniques using the duality between invariant faces of the state space $S(\mathfrak{A})$ of \mathfrak{A} and two-sided ideals in \mathfrak{A} , as shown by E. Effros, might be helpful in studying it. In this note we shall use such arguments to solve the problem to the affirmative.

By a face of $S(\mathfrak{A})$ we shall mean a convex subset F such that if $\rho \in F$, $\omega \in S(\mathfrak{A})$ and $a\omega \leq \rho$ for some a > 0, then $\omega \in F$. F is an *invariant* face if $\rho \in F$ implies the state $B \rightarrow \rho(A^*BA) \cdot \rho(A^*A)^{-1}$ belongs to F whenever $\rho(A^*A) \neq 0$ and $A \in \mathfrak{A}$. We denote by F^{\perp} the set of operators $A \in \mathfrak{A}$ such that $\rho(A) = 0$ for all $\rho \in F$. If $\mathfrak{I} \subset \mathfrak{A}$, \mathfrak{I}^{\perp} shall denote the set of states ρ such that $\rho(A) = 0$ for all $A \in \mathfrak{J}$. E. Effros [2] has shown that the map $\Im \to \Im^{\perp}$ is an order inverting bijection between uniformly closed two-sided ideals of \mathfrak{A} and w^* -closed invariant faces of $S(\mathfrak{A})$. Moreover, $(\mathfrak{F}^{\perp})^{\perp} = \mathfrak{F}$, and $(F^{\perp})^{\perp} = F$ when F is a w^* -closed invariant face. If 3 and 3 are uniformly closed two-sided ideals in \mathfrak{A} then $(\mathfrak{Y} \cap \mathfrak{F})^{\perp} = \operatorname{conv}(\mathfrak{Y}^{\perp}, \mathfrak{F}^{\perp})$, the convex hull of \mathfrak{Y}^{\perp} and \mathfrak{F}^{\perp} , and $(\Im + \Im)^{\perp} = \Im^{\perp} \cap \Im^{\perp}$. If A is a self-adjoint operator in \mathfrak{A} let \hat{A} denote the w*-continuous affine function on $S(\mathfrak{A})$ defined by $\hat{A}(\rho) = \rho(A)$. It has been shown by R. Kadison, [3] and [4], that the map $A \rightarrow \hat{A}$ is an isometric order-isomorphism of the self-adjoint part of a onto all w^* -continuous real affine functions on $S(\mathfrak{A})$. Moreover, if \mathfrak{F} is a uniformly closed two-sided ideal in \mathfrak{A} , and ψ is the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{F}$, then the map $\rho \rightarrow \rho \circ \psi$ is an affine isomorphism of $S(\mathfrak{A}/\mathfrak{F})$ onto \mathfrak{F}^{\perp} . Thus the map $\psi(A) \to \widehat{A} | \mathfrak{F}^{\perp}$ is an orderisomorphic isometry on the self-adjoint operators in $\mathfrak{A}/\mathfrak{R}$. We shall below make extensive use of these facts. For other references see **[1, §1]**.

THEOREM. Let \mathfrak{A} be a C*-algebra. If \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{A} then

$$(\Im + \mathfrak{F})^+ = \mathfrak{S}^+ + \mathfrak{F}^+.$$

In order to prove the theorem we may assume \mathfrak{A} has an identity, denoted by *I*. We first prove a