A GENERAL WEDDERBURN THEOREM

BY CARL FAITH

Communicated by S. Smale, May 27, 1966

Let R be a ring, E a left R-module, and set

 $R'(E) = R' = \operatorname{End}_R E, \qquad R''(E) = R'' = \operatorname{End}_{R'} E.$

We say that E is balanced in case the natural homomorphism $\lambda: R \to R''$ under which $x \mapsto \lambda_x$ where $\lambda_x(v) = xv$, $\forall v \in E$, is an isomorphism. The classical Wedderburn theorem gives a criterion for a module to be balanced. We give a very short proof of a theorem of Morita (in the terminology of [1]) which implies many such criteria.

A left *R*-module *E* is said to be a generator (for left *R*-modules) if every *R*-module can be expressed as a homomorphic image of (possibly infinite) direct sum of copies of *E*.

THEOREM 1. Let E be a generator. Then E is balanced.

PROOF. We first prove that for any module F, $R \oplus F$ is balanced. Given $v \in R \oplus F$, there exists an element $\phi \in R'(R \oplus F)$ such that $\phi(1) = v$ (we view R and F as embedded in $R \oplus F$ as $R \oplus 0$ and $0 \oplus F$ respectively). Let $p: R \oplus F \to R$ be the projection. Let $f \in R''(R \oplus F)$. Then f(1) = fp(1) = pf(1). Hence $f(1) \in R$. It follows that

$$f(v) = f\phi(1) = \phi f(1) = \phi(f(1) \cdot 1) = f(1)\phi(1) = f(1)v.$$

This proves what we wanted.

Let *E* be a generator. There exists a surjective homomorphism $E^n \rightarrow R$ for some integer $n \ge 1$ (we can take *n* finite because *R* is generated by one element). Since *R* is in fact free, we can write $E^n = R \oplus F$ for some module *F*. Hence E^n is balanced. We conclude the proof with the following lemma.

LEMMA. If E is any module and E^n is balanced, then E is balanced.

PROOF. An element $\phi \in \operatorname{End}_R(E^n)$ can be represented by a matrix (ϕ_{ij}) with $\phi_{ij} \in \operatorname{End}_R(E)$, namely for $v \in E^n$ with components $v_j \in E$ we have

$$\phi(v) = \begin{pmatrix} \phi_{11} \cdot \cdot \cdot \phi_{1n} \\ \cdot & \cdot \\ \cdot & \cdot \\ \phi_{n1} \cdot \cdot \cdot \phi_{nn} \end{pmatrix} \begin{pmatrix} v_1 \\ \cdot \\ \cdot \\ v_n \end{pmatrix}.$$

Let $f \in R''(E)$. Then the matrix