A POLYNOMIAL ANALOG OF THE GOLDBACH CON JECTURE ${ }^{1}$

BY DAVID HAYES

Communicated by G. B. Huff, September 28, 1962
We call a polynomial $c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m}$ in the ring $G F[q, x]$ primary if $c_{0}=1$. Suppose H is a polynomial in $G F[q, x]$ and let $h=\operatorname{deg} H$. Then the following theorem is easily established:

Theorem 1. If q is sufficiently large relative to h, then H is the sum of two irreducible polynomials, each of degree $h+1$.

Proof. The primary irreducibles of degree $h+1$ fall into $\phi(H)$ residue classes mod H. The number of such irreducibles is

$$
\frac{q^{h+1}}{h+1}+O\left(\frac{q^{(h+1) / 2}}{h+1}\right)
$$

and the number of residue classes is $\phi(H)<q^{h}$. Therefore, if q is sufficiently large relative to h, some one residue class contains two irreducibles P and Q. For any such pair of irreducibles P and Q, there is an element α of $G F(q)$ so that $\alpha P+(-\alpha) Q=H$. This is the assertion of the theorem.

Our aim in this note is to sketch a proof of an asymptotic formula ($q \rightarrow \infty$) for the number of representations of the polynomial H as a sum of two irreducibles, each of degree $h+1$. More specifically,

Theorem 2. Let $N(H)$ denote the number of pairs P, Q of primary irreducibles in $G F[q, x]$ such that
(1) $\operatorname{deg} P=\operatorname{deg} Q=h+1$,
(2) $P \neq Q$,
(3) $P-Q \equiv 0(\bmod H)$.

Then we have the asymptotic formula

$$
\begin{equation*}
N(H)=\frac{q^{2(h+1)}}{(h+1)^{2} \phi(H)}+O\left(q^{h+1}\right) \quad \text { as } \quad q \rightarrow \infty \tag{1}
\end{equation*}
$$

Outline of proof. Let $\pi(r ; H, K)$ denote the number of primary irreducibles P of degree r such that $P \equiv K(\bmod H)$. Then we have

$$
\begin{equation*}
N(H)=\sum_{K}[\pi(h+1 ; H, K)]^{2}-\psi(h+1) \tag{2}
\end{equation*}
$$

where K runs through a reduced residue system $\bmod H$, and $\psi(r)$ is

[^0]
[^0]: ${ }^{1}$ Supported in part by NSF grant G-16485.

