A POLYNOMIAL ANALOG OF THE GOLDBACH CONJECTURE¹

BY DAVID HAYES

Communicated by G. B. Huff, September 28, 1962

We call a polynomial $c_0x^m + c_1x^{m-1} + \cdots + c_m$ in the ring GF[q, x] primary if $c_0 = 1$. Suppose H is a polynomial in GF[q, x] and let $h = \deg H$. Then the following theorem is easily established:

THEOREM 1. If q is sufficiently large relative to h, then H is the sum of two irreducible polynomials, each of degree h+1.

PROOF. The primary irreducibles of degree h+1 fall into $\phi(H)$ residue classes mod H. The number of such irreducibles is

$$\frac{q^{h+1}}{h+1} + O\left(\frac{q^{(h+1)/2}}{h+1}\right)$$

and the number of residue classes is $\phi(H) < q^h$. Therefore, if q is sufficiently large relative to h, some one residue class contains two irreducibles P and Q. For any such pair of irreducibles P and Q, there is an element α of GF(q) so that $\alpha P + (-\alpha)Q = H$. This is the assertion of the theorem.

Our aim in this note is to sketch a proof of an asymptotic formula $(q \to \infty)$ for the number of representations of the polynomial H as a sum of two irreducibles, each of degree h+1. More specifically,

THEOREM 2. Let N(H) denote the number of pairs P, Q of primary irreducibles in GF[q, x] such that

- (1) $\deg P = \deg Q = h + 1$,
- (2) $P \neq Q$,
- (3) $P-Q\equiv 0 \pmod{H}$.

Then we have the asymptotic formula

(1)
$$N(H) = \frac{q^{2(h+1)}}{(h+1)^2 \phi(H)} + O(q^{h+1}) \quad as \quad q \to \infty.$$

OUTLINE OF PROOF. Let $\pi(r; H, K)$ denote the number of primary irreducibles P of degree r such that $P \equiv K \pmod{H}$. Then we have

(2)
$$N(H) = \sum_{K} [\pi(h+1; H, K)]^2 - \psi(h+1),$$

where K runs through a reduced residue system mod H, and $\psi(r)$ is

¹ Supported in part by NSF grant G-16485.