APPROXIMATION IN UNIFORM NORM BY SOLUTIONS OF ELLIPTIC DIFFERENTIAL EQUATIONS BY FELIX E. BROWDER¹ Communicated March 19, 1961 **Introduction.** Let G be an open subset of the Euclidean n-space E^n , G_1 an open subset with compact closure in G. If n=2 and G is the whole of E^2 , an important circle of theorems in the theory of analytic functions associated with the names of Walsh, Hartogs-Rosenthal, Lavrentiev, Keldych, and Mergelyan deals with the possibility of approximating analytic functions on G_1 continuous on its closure, uniformly on G_1 by polynomials in the complex variable z. Mergelyan's theorem [1], the most general of these results, asserts that if \overline{G}_1 does not disconnect E^2 , then every such analytic function is uniformly approximable by polynomials on \overline{G}_1 . More generally, if we replace \overline{G}_1 by any compact subset K of E^2 , Mergelyan's result asserts that if K does not disconnect E^2 , then every continuous function on K which is analytic at every interior point of K is uniformly approximable on K by polynomials in z. In view of the classical theorem of Runge on uniform approximation of analytic functions on compact subsets of G_1 by polynomials. Mergelyan's theorem is equivalent to the assertion that each function f(z) which is continuous on K and analytic in the interior of K may be approximated uniformly on K by functions analytic on a prescribed open set G containing K in its interior. From the point of view of differential equations, the class of analytic functions is merely the class of solutions of the homogeneous first-order linear elliptic differential equation with constant complex coefficients: $$\frac{\partial u}{\partial \bar{z}} = 0,$$ where $\partial/\partial \bar{z}$ is the classical Cauchy-Riemann operator $$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y}$$ in the plane. The existence of theorems of the Walsh-Lavrentiev-Mergelyan type for the Cauchy-Riemann operator raises the question of possible generalizations of such results for solutions of general $^{^{\}rm 1}$ Sloan Fellow. The preparation of this paper was partially supported by N. S. F. Grant G-8236.