APPROXIMATION IN UNIFORM NORM BY SOLUTIONS OF ELLIPTIC DIFFERENTIAL EQUATIONS

BY FELIX E. BROWDER ${ }^{1}$
Communicated March 19, 1961

Introduction. Let G be an open subset of the Euclidean n-space E^{n}, G_{1} an open subset with compact closure in G. If $n=2$ and G is the whole of E^{2}, an important circle of theorems in the theory of analytic functions associated with the names of Walsh, HartogsRosenthal, Lavrentiev, Keldych, and Mergelyan deals with the possibility of approximating analytic functions on G_{1} continuous on its closure, uniformly on G_{1} by polynomials in the complex variable z. Mergelyan's theorem [1], the most general of these results, asserts that if \bar{G}_{1} does not disconnect E^{2}, then every such analytic function is uniformly approximable by polynomials on \bar{G}_{1}. More generally, if we replace \bar{G}_{1} by any compact subset K of E^{2}, Mergelyan's result asserts that if K does not disconnect E^{2}, then every continuous function on K which is analytic at every interior point of K is uniformly approximable on K by polynomials in z. In view of the classical theorem of Runge on uniform approximation of analytic functions on compact subsets of G_{1} by polynomials, Mergelyan's theorem is equivalent to the assertion that each function $f(z)$ which is continuous on K and analytic in the interior of K may be approximated uniformly on K by functions analytic on a prescribed open set G containing K in its interior.

From the point of view of differential equations, the class of analytic functions is merely the class of solutions of the homogeneous first-order linear elliptic differential equation with constant complex coefficients:

$$
\frac{\partial u}{\partial \bar{z}}=0,
$$

where $\partial / \partial \bar{z}$ is the classical Cauchy-Riemann operator

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2} \frac{\partial}{\partial x}-\frac{1}{2 i} \frac{\partial}{\partial y}
$$

in the plane. The existence of theorems of the Walsh-LavrentievMergelyan type for the Cauchy-Riemann operator raises the question of possible generalizations of such results for solutions of general

[^0]
[^0]: ${ }^{1}$ Sloan Fellow. The preparation of this paper was partially supported by N. S. F. Grant G-8236.

