DERIVATIVES OF INFINITE ORDER

R. P. BOAS, JR. AND K. CHANDRASEKHARAN

Let f(x) have derivatives of all orders in (a, b). If, as $n \to \infty$, $f^{(n)}(x) \to g(x)$ uniformly, or even boundedly, dominatedly or in the mean, then g(x) is necessarily of the form ke^{x} , where k is a constant; in fact, if $c \in (a, b)$,

$$f^{(n-1)}(x) - f^{(n-1)}(c) \rightarrow \int_{c}^{x} g(t) dt$$

and so

$$g(x) - g(c) = \int_c^x g(t) dt.$$

It then follows first that g(x) is continuous, then that g(x) is differentiable in (a, b), finally that g'(x) = g(x) and so $g(x) = ae^x$.

If $f^{(n)}(x)$ approaches a limit only for one value of x, however, it does not necessarily do so for other values of x. On the other hand, G. Vitali $[10]^1$ and V. Ganapathy Iyer [6] showed that if f(x) is analytic in (a, b) and $f^{(n)}(x)$ approaches a limit for one $x_0 \in (a, b)$, then $f^{(n)}(x)$ converges uniformly in each closed subinterval of (a, b). Ganapathy Iyer asked two questions in this connection:

(I) If $f^{(n)}(x) \rightarrow g(x)$ for each x in (a, b), where g(x) is finite, does $g(x) = ke^{x}$?

(II) If f(x) belongs to a quasianalytic class in (a, b) and $\lim_{n\to\infty} f^{(n)}(x_0)$ exists for a single x_0 , does $\lim_{n\to\infty} f^{(n)}(x)$ exist for every x in (a, b)?

We shall show that the answer to both questions is yes. We also indicate some possible generalizations.

We first answer (I).

THEOREM 1. If $f^{(n)}(x) \rightarrow g(x)$ for each x in (a, b), where g(x) is finite, then f(x) is analytic in (a, b).

It follows from Ganapathy Iyer's result that then $g(x) = ke^x$.

PROOF. At each point x of (a, b) form the Taylor series of f(x). The radius of convergence of this series, as a function of x, has a positive

Presented to the Society, September 5, 1947; received by the editors May 29, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.