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let x be fixed, —1 <x <1. We obtain for the roots of the polynomial
(19) in 2 the condition
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thus the roots in z are all real. Using the trivial inequality (16) the
assertion follows.
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In discussing eigenvalues and eigenfunctions of the Sturm-Liou-
ville differential equation

L) +Mu=0, L) = (pw')’ — qu,
with
p(x) =2m>0
gx) =0 } for ¢ £ x £ b, and for some a. 8, and m,
Bz p(x)2a>0
and the boundary conditions
u(a) = cru(d), w'(a) = co'(B), cicop(a) = p(d),

we find that we can represent our eigenfunctions as unit normals in
the directions of the principal axes of an ellipsoid in function space.
We define our function space F as the set of all functions v(x),
a=<x=b, which satisfy the boundary conditions of the Sturm-Liou-
ville equation. The origin of our space will be the function %(x) =0.
We can now metrize F by defining our inner product (u#, v) for
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