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If H is an arbitrary associative ring we can symmetrize and anti-
symmetrize the multiplication defined in 21 to obtain two non-
associative rings. We set 

(1) {ab} = ab + ba, [ab] = ab — ba 

and call the former the Jordan product and the latter the commutator 
or Lie product of a and b. If we use {ab} as product in place of the 
originally defined ab we obtain the Jordan ring 21/ determined by 21. 
Similarly the Lie ring 2tj is obtained by using [ab] in place of ab. 
Naturally if 21 has characteristic 2 then 21/=21*. I t is customary to 
exclude this case from consideration but in most of our discussion 
we shall not find it necessary to do so. Clearly {ab} = {ba), [ab] 
= — [ba]. Also we recall the following well known identity of 
Jacobi's: 

(2) [[ab]c]+ [[bc]a]+ [[ca]b]=0. 

If 9t is any non-associative ring one defines the center of 9t to be the 
totality of elements c that commute, 

(3) c-a « a-c, 

and associate, 

(ab)-c = a-(b'c)t (ac)'b = a-(c-b)t 
(4) 

{ca)'b = c-(a-b), 

with all a, b in 9t.2 I t is known that the center is a subring of 9Î. 
Clearly this subring is associative. I t is also known that the center 
of a simple ring is either 0 or a field. I t is easy to see that the middle 
condition in (4) is a consequence of (3) and the other conditions in 
(4). Also it is clear tha t if 91 is commutative then the first condition 
of (4) characterizes the center. 

We consider now the centers (£/ and (Ei respectively of 21/ and 21*. 
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