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Let xÇ£E. Denote by S(xf e) the sphere of center x and radius €. 
Denote by G(x, e) the greatest distance of the points of 3(#, e) from J3. 
We are going to prove the following theorem. 

THEOREM 2. For almost all points of E (that is, for all points of E 
except a set of n-dimensional measure 0) 

limG(#, c)/e = 0. 

It is well known that almost all points of E are points of Lebesgue 
density 1. Let x be such a point, and suppose that 

lim G(x, €)/c ^ 0. 

This means that there exists an infinite sequence €,• and points zit 

z%ÇzS(xt €{), €,—»0, such that the distance of z» from E is greater than 
C€i, where c>0. But this clearly means that x can not have Lebesgue 
density 1. This contradiction establishes our theorem. 
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In recent work on the area of surfaces Radó [l]1 has had occasion 
to use the following properties as applied to locally connected con­
tinua A : 

(T) Every simple arc in A is a monotone retract of A ; 

(II) Every monotone image of A has property (w). 

Radó has noted that (II) implies (r) and that the sphere and 2-cell 
each have (II). In this paper it will be shown that (1) for locally con­
nected continua in general, property (II) is equivalent to unicoher-
ence, (2) for plane locally connected continua, property (ir) is equiva­
lent to unicoherence, and (3) every closed 2-dimensional connected 
manifold has property (x). 

To clarify our meaning, we recall that a continuum is compact, 
connected and metric. A continuous mapping f(A)~B on a con­
tinuum A is monotone provided f~l(y) is a continuum for yÇzB. If 
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x Numbers in brackets refer to the Bibliography at the end of the paper. 


